23 research outputs found

    Conservation of Asian honey bees

    Full text link
    East Asia is home to at least 9 indigenous species of honey bee. These bees are extremely valuable because they are key pollinators of about 1/3 of crop species, provide significant income to some of the world's poorest people, and are prey items for some endemic vertebrates. Furthermore, Southeast Asian Dipterocarp forests appear to be adapted to pollination by honey bees. Thus long-term decline in honey bee populations may lead to significant changes in the pollinator ecology of these forests, exacerbating the more direct effects of deforestation and wood harvesting on forest health. Although complete extinction of any honey bee species is seen as unlikely, local extinction is likely to occur across extensive areas. The most significant threats to local honey bee populations are deforestation and excessive hunting pressure. Conservation of East Asian honey bees requires immediate action to determine what rate of colony harvesting by honey hunters is sustainable. This requires information on the demography of hunted populations, particularly the intrinsic growth rates and the rates of harvest

    Conservation of Asian honey bees

    Full text link
    East Asia is home to at least 9 indigenous species of honey bee. These bees are extremely valuable because they are key pollinators of about 1/3 of crop species, provide significant income to some of the world's poorest people, and are prey items for some endemic vertebrates. Furthermore, Southeast Asian Dipterocarp forests appear to be adapted to pollination by honey bees. Thus long-term decline in honey bee populations may lead to significant changes in the pollinator ecology of these forests, exacerbating the more direct effects of deforestation and wood harvesting on forest health. Although complete extinction of any honey bee species is seen as unlikely, local extinction is likely to occur across extensive areas. The most significant threats to local honey bee populations are deforestation and excessive hunting pressure. Conservation of East Asian honey bees requires immediate action to determine what rate of colony harvesting by honey hunters is sustainable. This requires information on the demography of hunted populations, particularly the intrinsic growth rates and the rates of harvest

    Nestmate recognition by guards of the Asian hive bee Apis cerana

    Full text link
    When a honey bee colony becomes queenless and broodless its only reproductive option is for some of its workers to produce sons before the colony perishes. However, for this to be possible the policing of worker-laid eggs must be curtailed and this provides the opportunity for queenless colonies to be reproductively parasitized by workers from other nests. Such reproductive parasitism is known to occur in Apis florea and A. cerana. Microsatellite analyses of worker samples have demonstrated that the proportion of non-natal workers present in an A. cerana colony declines after a colony is made queenless. This observation suggests that queenless A. cerana colonies may be more vigilant in repelling potentially parasitic non-natal workers than queenright colonies. We compared rates of nestmate and non-nestmate acceptance in both queenright and queenless A. cerana colonies using standard assays and showed that there is no statistical difference between the proportion of non-nestmate workers that are rejected in queenless and queenright colonies. We also show that, contrary to earlier reports, A. cerana guards are able to discriminate nestmate workers from non-nestmates, and that they reject significantly more non-nestmate workers than nestmate workers. © 2008 Birkhäuser Verlag

    Actual reproductive conflict during emergency queen rearing in

    Full text link
    Unequal relatedness among workers in polyandrous honey bee colonies provides the potential for reproductive conflict during emergency queen rearing. Adult workers can increase their inclusive fitness by selectively rearing their full-sisters as queens. We investigated the paternity of emergency queens in two colonies of Apis florea using five microsatellite loci. In colony 1 there was no significant difference between the proportions of queens and workers in each patriline (P = 0.48). In contrast, the relative frequency of patrilines in colony 2 differed significantly between queens and workers (P = 0.03). More than a quarter of the queens reared in this colony were of a single patriline, suggesting that larvae were selected for rearing as queens non-randomly

    Nestmate recognition by guards of the Asian hive bee Apis cerana

    Full text link

    Queenless colonies of the Asian red dwarf honey bee (Apis florea) are infiltrated by workers from other queenless colonies

    Full text link
    In all honey bee species studied thus far, 2--4% of the workers were not born in the sampled colony. These unrelated (nonnatal) workers are thought to arise via orientation errors while returning from foraging trips. Interestingly, in colonies of the red dwarf honey bee, Apis florea, the proportion of nonnatal workers increases significantly when the colonies become queenless, and these workers are more likely to have active ovaries and lay eggs than natal workers. As a result, queenless colonies are heavily parasitized with the eggs of nonnatal workers, but the origin of the parasitizing workers is currently unknown. Here we show that workers from queenless A. florea colonies are far more likely to leave their colony and join another colony compared with workers from queenright colonies. Choice experiments showed that these drifted workers are much more likely to join a queenless colony than a colony with a queen. Perhaps surprisingly, not many workers from queenright colonies joined queenless colonies despite the opportunity for direct reproduction in queenless colonies. We suggest that the inclusive fitness benefits of remaining in the natal colony in the presence of the queen exceed the benefits of direct reproduction in an unrelated queenless colony. Copyright 2009, Oxford University Press.
    corecore