33,322 research outputs found
Large Deviations of Extreme Eigenvalues of Random Matrices
We calculate analytically the probability of large deviations from its mean
of the largest (smallest) eigenvalue of random matrices belonging to the
Gaussian orthogonal, unitary and symplectic ensembles. In particular, we show
that the probability that all the eigenvalues of an (N\times N) random matrix
are positive (negative) decreases for large N as \exp[-\beta \theta(0) N^2]
where the parameter \beta characterizes the ensemble and the exponent
\theta(0)=(\ln 3)/4=0.274653... is universal. We also calculate exactly the
average density of states in matrices whose eigenvalues are restricted to be
larger than a fixed number \zeta, thus generalizing the celebrated Wigner
semi-circle law. The density of states generically exhibits an inverse
square-root singularity at \zeta.Comment: 4 pages Revtex, 4 .eps figures included, typos corrected, published
versio
Viscosity of High Energy Nuclear Fluids
Relativistic high energy heavy ion collision cross sections have been
interpreted in terms of almost ideal liquid droplets of nuclear matter. The
experimental low viscosity of these nuclear fluids have been of considerable
recent quantum chromodynamic interest. The viscosity is here discussed in terms
of the string fragmentation models wherein the temperature dependence of the
nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.Comment: 6 pages, ReVTeX 4 format, two figures, *.eps forma
The Forestecology R Package for Fitting and Assessing Neighborhood Models of the Effect of Interspecific Competition on the Growth of Trees
Neighborhood competition models are powerful tools to measure the effect of interspecific competition. Statistical methods to ease the application of these models are currently lacking. We present the forestecology package providing methods to (a) specify neighborhood competition models, (b) evaluate the effect of competitor species identity using permutation tests, and (cs) measure model performance using spatial cross-validation. Following Allen and Kim (PLoS One, 15, 2020, e0229930), we implement a Bayesian linear regression neighborhood competition model. We demonstrate the package\u27s functionality using data from the Smithsonian Conservation Biology Institute\u27s large forest dynamics plot, part of the ForestGEO global network of research sites. Given ForestGEO’s data collection protocols and data formatting standards, the package was designed with cross-site compatibility in mind. We highlight the importance of spatial cross-validation when interpreting model results. The package features (a) tidyverse-like structure whereby verb-named functions can be modularly “piped” in sequence, (b) functions with standardized inputs/outputs of simple features sf package class, and (c) an S3 object-oriented implementation of the Bayesian linear regression model. These three facts allow for clear articulation of all the steps in the sequence of analysis and easy wrangling and visualization of the geospatial data. Furthermore, while the package only has Bayesian linear regression implemented, the package was designed with extensibility to other methods in mind
Runaway evaporation for optically dressed atoms
Forced evaporative cooling in a far-off-resonance optical dipole trap is
proved to be an efficient method to produce fermionic- or bosonic-degenerated
gases. However in most of the experiences, the reduction of the potential
height occurs with a diminution of the collision elastic rate. Taking advantage
of a long-living excited state, like in two-electron atoms, I propose a new
scheme, based on an optical knife, where the forced evaporation can be driven
independently of the trap confinement. In this context, the runaway regime
might be achieved leading to a substantial improvement of the cooling
efficiency. The comparison with the different methods for forced evaporation is
discussed in the presence or not of three-body recombination losses
The Evolution of Structure in X-ray Clusters of Galaxies
Using Chandra archival data, we quantify the evolution of cluster morphology
with redshift. Clusters form and grow through mergers with other clusters and
groups, and the amount of substructure in clusters in the present epoch and how
quickly it evolves with redshift depend on the underlying cosmology. Our sample
includes 40 X-ray selected, luminous clusters from the Chandra archive, and we
quantify cluster morphology using the power ratio method (Buote & Tsai 1995).
The power ratios are constructed from the moments of the X-ray surface
brightness and are related to a cluster's dynamical state. We find that, as
expected qualitatively from hierarchical models of structure formation,
high-redshift clusters have more substructure and are dynamically more active
than low-redshift clusters. Specifically, the clusters with z>0.5 have
significantly higher average third and fourth order power ratios than the lower
redshift clusters. Of the power ratios, is the most unambiguous
indicator of an asymmetric cluster structure, and the difference in
between the two samples remains significant even when the effects of noise and
other systematics are considered. After correcting for noise, we apply a linear
fit to versus redshift and find that the slope is greater than zero
at better than 99% confidence. This observation of structure evolution
indicates that dynamical state may be an important systematic effect in cluster
studies seeking to constrain cosmology, and when calibrated against numerical
simulations, structure evolution will itself provide interesting bounds on
cosmological models.Comment: 42 pages, 6 figures, ApJ accepted. For a version of the paper
containing an appendix with images of all of the clusters, see
http://www.ociw.edu/~tesla/structure.ps.g
0103-72.6: A New Oxygen-Rich Supernova Remnant in the Small Magellanic Cloud
010372.6, the second brightest X-ray supernova remnant (SNR) in the Small
Magellanic Cloud (SMC), has been observed with the {\it Chandra X-Ray
Observatory}. Our {\it Chandra} observation unambiguously resolves the X-ray
emission into a nearly complete, remarkably circular shell surrounding bright
clumpy emission in the center of the remnant. The observed X-ray spectrum for
the central region is evidently dominated by emission from reverse shock-heated
metal-rich ejecta. Elemental abundances in this ejecta material are
particularly enhanced in oxygen and neon, while less prominent in the heavier
elements Si, S, and Fe. We thus propose that 010372.6 is a new
``oxygen-rich'' SNR, making it only the second member of the class in the SMC.
The outer shell is the limb-brightened, soft X-ray emission from the swept-up
SMC interstellar medium. The presence of O-rich ejecta and the SNR's location
within an H{\small II} region attest to a massive star core-collapse origin for
010372.6. The elemental abundance ratios derived from the ejecta suggest an
18 M progenitor star.Comment: 6 pages (ApJ emulator format), including 5 figures and 2 tables. For
high quality Figs.1,2, & 3, contact [email protected]. Accepted by the ApJ
Letter
Spin-Charge Coupling in lightly doped NdCeCuO
We use neutron scattering to study the influence of a magnetic field on spin
structures of NdCuO. On cooling from room temperature, NdCuO
goes through a series of antiferromagnetic (AF) phase transitions with
different noncollinear spin structures. While a c-axis aligned magnetic field
does not alter the basic zero-field noncollinear spin structures, a field
parallel to the CuO plane can transform the noncollinear structure to a
collinear one ("spin-flop" transition), induce magnetic disorder along the
c-axis, and cause hysteresis in the AF phase transitions. By comparing these
results directly to the magnetoresistance (MR) measurements of
NdCeCuO, which has essentially the same AF structures
as NdCuO, we find that a magnetic-field-induced spin-flop transition,
AF phase hysteresis, and spin c-axis disorder all affect the transport
properties of the material. Our results thus provide direct evidence for the
existence of a strong spin-charge coupling in electron-doped copper oxides.Comment: 12 pages, 12 figure
Non-local modulation of the energy cascade in broad-band forced turbulence
Classically, large-scale forced turbulence is characterized by a transfer of
energy from large to small scales via nonlinear interactions. We have
investigated the changes in this energy transfer process in broad-band forced
turbulence where an additional perturbation of flow at smaller scales is
introduced. The modulation of the energy dynamics via the introduction of
forcing at smaller scales occurs not only in the forced region but also in a
broad range of length-scales outside the forced bands due to non-local triad
interactions. Broad-band forcing changes the energy distribution and energy
transfer function in a characteristic manner leading to a significant
modulation of the turbulence. We studied the changes in this transfer of energy
when changing the strength and location of the small-scale forcing support. The
energy content in the larger scales was observed to decrease, while the energy
transport power for scales in between the large and small scale forcing regions
was enhanced. This was investigated further in terms of the detailed transfer
function between the triad contributions and observing the long-time statistics
of the flow. The energy is transferred toward smaller scales not only by
wavenumbers of similar size as in the case of large-scale forced turbulence,
but by a much wider extent of scales that can be externally controlled.Comment: submitted to Phys. Rev. E, 15 pages, 18 figures, uses revtex4.cl
- …