12 research outputs found

    FORMULATION AND EVALUATION OF SIMVASTATIN GASTRORETENTIVE DRUG DELIVERY SYSTEM

    Get PDF
    Objective: The aim of this study was to formulate and evaluate gastro retentive drug delivery system (GRRDS) using an effervescent approach for simvastatin.Methods: Floating tablets were prepared using directly compressible polymers hydroxypropyl methylcellulose (HPMC) K100M, HPMC K4M and carboxymethylcellulose sodium (NaCMC). The prepared tablets were subjected to pre-formulation studies like Compressibility index, Hausner ratio and post compression parameters like buoyancy/floating test and In vitro dissolution study.Results: Drug-excipient compatibility studies performed with the help of FTIR instrument indicated that there were no interactions. The DSC thermogram of the formulations revealed that crystalline form of simvastatin existed in the formulation which was confirmed by X-ray powder diffraction. Dissolution studies indicated that there was a decrease in the drug release with an increase in the polymer viscosity. The tablets prepared with low-viscosity grade HPMC K4M exhibited short Buoyancy Lag Time and floated for a longer duration as compared with formulations containing high viscosity grade HPMC K100M. The ‘n' value for dissolution studies for all the formulations was found to be in the range of 0.647 to 0.975 indicating non-Fickian or anomalous drug transport. Conclusion: The drug release rate and floating duration of tablets depended on the nature of the polymer and other added excipients. The release rate of the drug can be optimized by using different ratios of polymers and other excipients. The formulation F8 achieved the optimized batch and complied with all the properties of the tablets

    Hyperon weak radiative decays in chiral perturbation theory

    Get PDF
    We investigate the leading-order amplitudes for weak radiative decays of hyperons in chiral perturbation theory. We consistently include contributions from the next-to-leading order weak-interaction Lagrangian. It is shown that due to these terms Hara's theorem is violated. The data for the decays of charged hyperons can be easily accounted for. However, at this order in the chiral expansion, the four amplitudes for the decays of neutral hyperons satisfy relations which are in disagreement with the data. The asymmetry parameters for all the decays can not be accounted for without higher-order terms. We shortly comment on the effect of the 27-plet part of the weak interaction.Comment: 8 pages of REVTeX and using macro-package "feynman.tex" (available at http://xxx.lanl.gov/ftp/hep-ph/papers/macros) for the 2 figure

    Identification and Characterization of a Leucine-Rich Repeat Kinase 2 (LRRK2) Consensus Phosphorylation Motif

    Get PDF
    Mutations in LRRK2 (leucine-rich repeat kinase 2) have been identified as major genetic determinants of Parkinson's disease (PD). The most prevalent mutation, G2019S, increases LRRK2's kinase activity, therefore understanding the sites and substrates that LRRK2 phosphorylates is critical to understanding its role in disease aetiology. Since the physiological substrates of this kinase are unknown, we set out to reveal potential targets of LRRK2 G2019S by identifying its favored phosphorylation motif. A non-biased screen of an oriented peptide library elucidated F/Y-x-T-x-R/K as the core dependent substrate sequence. Bioinformatic analysis of the consensus phosphorylation motif identified several novel candidate substrates that potentially function in neuronal pathophysiology. Peptides corresponding to the most PD relevant proteins were efficiently phosphorylated by LRRK2 in vitro. Interestingly, the phosphomotif was also identified within LRRK2 itself. Autophosphorylation was detected by mass spectrometry and biochemical means at the only F-x-T-x-R site (Thr 1410) within LRRK2. The relevance of this site was assessed by measuring effects of mutations on autophosphorylation, kinase activity, GTP binding, GTP hydrolysis, and LRRK2 multimerization. These studies indicate that modification of Thr1410 subtly regulates GTP hydrolysis by LRRK2, but with minimal effects on other parameters measured. Together the identification of LRRK2's phosphorylation consensus motif, and the functional consequences of its phosphorylation, provide insights into downstream LRRK2-signaling pathways
    corecore