21 research outputs found

    Scattering of massless particles in one-dimensional chiral channel

    Full text link
    We present a general formalism describing a propagation of an arbitrary multiparticle wave packet in a one-dimensional multimode chiral channel coupled to an ensemble of emitters which are distributed at arbitrary positions. The formalism is based on a direct and exact resummation of diagrammatic series for the multiparticle scattering matrix. It is complimentary to the Bethe Ansatz and to approaches based on equations of motion, and it reveals a simple and transparent structure of scattering states. In particular, we demonstrate how this formalism works on various examples, including scattering of one- and two-photon states off two- and three-level emitters, off an array of emitters as well as scattering of coherent light. We argue that this formalism can be constructively used for study of scattering of an arbitrary initial photonic state off emitters with arbitrary degree of complexity.Comment: 25 pages, 5 figure

    High flux cold Rubidium atomic beam for strongly coupled Cavity QED

    Full text link
    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity QED experiments in the regime of strong coupling. A 2 D+D^+ MOT, loaded by rubidium getters in a dry film coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate of 1.5 x 101010^{10} atoms/sec. The MM-MOT provided a continuous beam with tunable velocity. This beam was then directed through the waist of a 280 ÎĽ\mum cavity resulting in a Rabi splitting of more than +/- 10 MHz. The presence of sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling regime, with parameters (g, Îş\kappa, Îł\gamma)/2Ď€\pi equal to (7, 3, 6)/ 2Ď€\pi MHz.Comment: Journal pape

    Linear atomic quantum coupler

    Full text link
    In this paper, we develop the notion of the linear atomic quantum coupler. This device consists of two modes propagating into two waveguides, each of them includes a localized and/or a trapped atom. These waveguides are placed close enough to allow exchanging energy between them via evanescent waves. Each mode interacts with the atom in the same waveguide in the standard way, i.e. as the Jaynes-Cummings model (JCM), and with the atom-mode in the second waveguide via evanescent wave. We present the Hamiltonian for the system and deduce the exact form for the wavefunction. We investigate the atomic inversions and the second-order correlation function. In contrast to the conventional linear coupler, the atomic quantum coupler is able to generate nonclassical effects. The atomic inversions can exhibit long revival-collapse phenomenon as well as subsidiary revivals based on the competition among the switching mechanisms in the system. Finally, under certain conditions, the system can yield the results of the two-mode JCM.Comment: 14 pages, 3 figures; comments are most welcom

    >

    No full text

    >

    No full text
    corecore