67,477 research outputs found
Geometry, thermodynamics, and finite-size corrections in the critical Potts model
We establish an intriguing connection between geometry and thermodynamics in
the critical q-state Potts model on two-dimensional lattices, using the q-state
bond-correlated percolation model (QBCPM) representation. We find that the
number of clusters of the QBCPM has an energy-like singularity for q different
from 1, which is reached and supported by exact results, numerical simulation,
and scaling arguments. We also establish that the finite-size correction to the
number of bonds, has no constant term and explains the divergence of related
quantities as q --> 4, the multicritical point. Similar analyses are applicable
to a variety of other systems.Comment: 12 pages, 6 figure
Universal scaling functions for bond percolation on planar random and square lattices with multiple percolating clusters
Percolation models with multiple percolating clusters have attracted much
attention in recent years. Here we use Monte Carlo simulations to study bond
percolation on planar random lattices, duals of random
lattices, and square lattices with free and periodic boundary conditions, in
vertical and horizontal directions, respectively, and with various aspect ratio
. We calculate the probability for the appearance of
percolating clusters, the percolating probabilities, , the average
fraction of lattice bonds (sites) in the percolating clusters,
(), and the probability distribution function for the fraction
of lattice bonds (sites), in percolating clusters of subgraphs with
percolating clusters, (). Using a small number of
nonuniversal metric factors, we find that , ,
(), and () for random lattices, duals
of random lattices, and square lattices have the same universal finite-size
scaling functions. We also find that nonuniversal metric factors are
independent of boundary conditions and aspect ratios.Comment: 15 pages, 11 figure
Model-Independent Reionization Observables in the CMB
We represent the reionization history of the universe as a free function in
redshift and study the potential for its extraction from CMB polarization
spectra. From a principal component analysis, we show that the ionization
history information is contained in 5 modes, resembling low-order Fourier modes
in redshift space. The amplitude of these modes represent a compact description
of the observable properties of reionization in the CMB, easily predicted given
a model for the ionization fraction. Measurement of these modes can ultimately
constrain the total optical depth, or equivalently the initial amplitude of
fluctuations to the 1% level regardless of the true model for reionization.Comment: 4 pages, 5 figures, submitted to PRD (rapid communications
Relativistic description of magnetic moments in nuclei with doubly closed shells plus or minus one nucleon
Using the relativistic point-coupling model with density functional PC-PK1,
the magnetic moments of the nuclei Pb, Pb, Tl and
Bi with a closed-shell core Pb are studied on the basis of
relativistic mean field (RMF) theory. The corresponding time-odd fields, the
one-pion exchange currents, and the first- and second-order corrections are
taken into account. The present relativistic results reproduce the data well.
The relative deviation between theory and experiment for these four nuclei is
6.1% for the relativistic calculations and somewhat smaller than the value of
13.2% found in earlier non-relativistic investigations. It turns out that the
meson is important for the description of magnetic moments, first by
means of one-pion exchange currents and second by the residual interaction
provided by the exchange.Comment: 11 pages, 7 figure
Integrable impurities in Hubbard chain with the open boundary condition
The Kondo problem of two impurities in 1D strongly correlated electron system
within the framework of the open boundary Hubbard chain is solved and the
impurities, coupled to the ends of the electron system, are introduced by their
scattering matrices with electrons so that the boundary matrices satisfy the
reflecting integrability condition. The finite size correction of the ground
state energy is obtained due to the impurities. Exact expressions for the low
temperature specific heat contributed by the charge and spin parts of the
magnetic impurities are derived. The Pauli susceptibility and the Kondo
temperature are given explicitly. The Kondo temperature is inversely
proportional to the density of electrons.Comment: 6 pages, Revtex, To appear in Europhysics Letter
Comment on "Spontaneous breaking of time-reversal symmetry in the pseudogap state of a high-T superconductor"
We argue that that in their recent experiment in which they claim to have
found evidence for a time-reversal symmetry broken state, Kaminski et al.
overlooked small temperature dependent changes in the superstructure of Bi2212.
These subtle changes may manifest themselves by changing the final state
configurations of the photoemission process and thus invalidate their ultimate
conclusions.Comment: Submitted as a comment Kaminski et al. Nature 416 610 (2002). This
version with additional reference
Tuning the thermal conductivity of graphene nanoribbons by edge passivation and isotope engineering: a molecular dynamics study
Using classical molecular dynamics simulation, we have studied the effect of
edge-passivation by hydrogen (H-passivation) and isotope mixture (with random
or supperlattice distributions) on the thermal conductivity of rectangular
graphene nanoribbons (GNRs) (of several nanometers in size). We found that the
thermal conductivity is considerably reduced by the edge H-passivation. We also
find that the isotope mixing can reduce the thermal conductivities, with the
supperlattice distribution giving rise to more reduction than the random
distribution. These results can be useful in nanoscale engineering of thermal
transport and heat management using GNRs.Comment: 4 pages, 4 figure
The Nernst effect in high- superconductors
The observation of a large Nernst signal in an extended region above
the critical temperature in hole-doped cuprates provides evidence that
vortex excitations survive above . The results support the scenario that
superfluidity vanishes because long-range phase coherence is destroyed by
thermally-created vortices (in zero field), and that the pair condensate
extends high into the pseudogap state in the underdoped (UD) regime. We present
a series of measurements to high fields which provide strong evidence for
this phase-disordering scenario.Comment: 21 pages, 28 figure
- …