6 research outputs found

    Low temperature heat capacity of Fe_{1-x}Ga_{x} alloys with large magneostriction

    Full text link
    The low temperature heat capacity C_{p} of Fe_{1-x}Ga_{x} alloys with large magnetostriction has been investigated. The data were analyzed in the standard way using electron (γT\gamma T) and phonon (βT3\beta T^{3}) contributions. The Debye temperature ΘD\Theta_{D} decreases approximately linearly with increasing Ga concentration, consistent with previous resonant ultrasound measurements and measured phonon dispersion curves. Calculations of ΘD\Theta_{D} from lattice dynamical models and from measured elastic constants C_{11}, C_{12} and C_{44} are in agreement with the measured data. The linear coefficient of electronic specific heat γ\gamma remains relatively constant as the Ga concentration increases, despite the fact that the magnetoelastic coupling increases. Band structure calculations show that this is due to the compensation of majority and minority spin states at the Fermi level.Comment: 14 pages, 6 figure

    Magnetostrictive and magnetoelectric behavior of Fe–20 at. % Ga/Pb(Zr,Ti)O3 laminates

    Get PDF
    The magnetostrictive and magnetoelectric (ME) properties of laminate composites of Fe–20 at. % Ga and Pb(Zr,Ti)O3 (PZT) have been studied for laminates of different geometries. The results show that (i) a long-type magnetostrictive Fe–20 at. % Ga crystal plate oriented along 〈001〉c and magnetized in its longitudinal (or length) direction has higher magnetostriction than a disk-type one; and consequently (ii) a long-type Fe–20 at. % Ga/PZT laminate has a giant ME effect, and is sensitive to low-level magnetic fields

    Fe–Ga/Pb(Mg1/3Nb2/3)O3–PbTiO3 magnetoelectric laminate composites

    Get PDF
    We have found large magnetoelectric (ME) effects in long-type laminate composites of Fe–20%Ga magnetostrictive alloys and piezoelectric Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. At lower frequencies, the ME voltage coefficient of a laminate with longitudinally magnetized and longitudinally polarized (i.e., L-L mode) layers was 1.41 V/Oe (or1.01 V/cm Oe). Near the natural resonant frequency ( ∼ 91 kHz) of the laminate, the ME voltage coefficients were found to be dramatically increased to 50.7 V/Oe (36.2 V/cm Oe)for the L-L mode. In addition, the laminate can detect a minute magnetic field as low as ∼ 2×10−12 T at resonance frequency, and ∼ 1×10−10 T at lower frequencies
    corecore