58 research outputs found
Thermal analysis of production of resonances in relativistic heavy-ion collisions
Production of resonances is considered in the framework of the
single-freeze-out model of ultra-relativistic heavy ion collisions. The
formalism involves the virial expansion, where the probability to form a
resonance in a two-body channel is proportional to the derivative of the
phase-shift with respect to the invariant mass. The thermal model incorporates
longitudinal and transverse flow, as well as kinematic cuts of the STAR
experiment at RHIC. We find that the shape of the pi+ pi- spectral line
qualitatively reproduces the preliminary experimental data when the position of
the rho peak is lowered. This confirms the need to include the medium effects
in the description of the RHIC data. We also analyze the transverse-momentum
spectra of rho, K*(892), and f_0(980), and find that the slopes agree with the
observed values. Predictions are made for eta, eta', omega, phi, Lambda(1520),
and Sigma(1385).Comment: minor modifications, a reference adde
Strange particle production at RHIC in a single-freeze-out model
Strange particle ratios and pT-spectra are calculated in a thermal model with
single freeze-out, previously used successfully to describe non-strange
particle production at RHIC. The model and the recently released data for phi,
Lambda, anti-Lambda, and K*(892) are in very satisfactory agreement, showing
that the thermal approach can be used to describe the strangeness production at
RHIC.Comment: We have added the comparison of the model predictions to the newly
released Lambda and K*(892) pT-spectra from STA
Shear mode bulk acoustic wave resonator based on c-axis oriented AIN thin film
A shear mode resonator based on bulk waves trapped in c-axis oriented AlN thin films was fabricated, simulated, and tested. The active 1.55 mu m thick AlN layer was deposited on top of an acoustic Bragg reflector composed of SiO2/AlN lambda/4 layer pairs. The resonance was excited by means of interdigitated electrodes consisting of 150 nm thick Al lines. Analytical and simulation calculations show that the in- plane electric field excites bulk acoustic wave shear modes that are trapped in such an AlN film slab. The experimental frequency corresponds well to the theoretical one. The evaluated resonance of the fundamental shear mode at 1.86 GHz revealed a coupling of 0.15% and Q-factor of 870 in air and 260 in silicon oil
Calculus of variations and optimal control
The theory of a Pontryagin minimum is developed for problems in the calculus of variations. The application of the notion of a Pontryagin minimum to the calculus of variations is a distinctive feature of this book. A new theory of quadratic conditions for a Pontryagin minimum, which covers broken extremals, is developed, and corresponding sufficient conditions for a strong minimum are obtained. Some classical theorems of the calculus of variations are generalized
- …