516 research outputs found

    Solid-state circuit for spin entanglement generation and purification

    Full text link
    We show how realistic charge manipulation and measurement techniques, combined with the exchange interaction, allow for the robust generation and purification of four-particle spin entangled states in electrically controlled semiconductor quantum dots. The generated states are immunized to the dominant sources of noise via a dynamical decoherence-free subspace; all additional errors are corrected by a purification protocol. This approach may find application in quantum computation, communication, and metrology.Comment: 5 pages, 2 figures; corrected minor typo

    Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation

    Full text link
    The optimal NN-pulse dynamical decoupling discovered by Uhrig for a spin-boson mmodel [Phys. Rev. Lett, {\bf 98}, 100504 (2007)] is proved to be universal in suppressing to O(TN+1)O(T^{N+1}) the pure dephasing or the longitudinal relaxation of a qubit (or spin-1/2) coupled to a generic bath in a short-time evolution of duration TT. It is also found that for the purpose of suppressing the longitudinal relaxation, an ideal Uhrig π\pi-pulse sequence can be generalized to a sequence consisting of the ideal one superimposed with finite-duration pulses satisfying certain symmetry requirements.Comment: 4 pages, 1 figure

    Influence of local fullerene orientation on the electronic properties of A3C60 compounds

    Full text link
    We have investigated sodium containing fullerene superconductors Na2AC60, A = Cs, Rb, and K, by Na-23 nuclear magnetic resonance (NMR) spectroscopy at 7.5 T in the temperature range of 10 to 400 K. Despite the structural differences from the Rb3C60 class of fullerene superconductors, in these compounds the NMR line of the tetrahedrally coordinated alkali nuclei also splits into two lines (T and T') at low temperature. In Na2CsC60 the splitting occurs at 170 K; in the quenched cubic phase of Na2RbC60 and Na2KC60 we observe split lines at 80 K. Detailed investigations of the spectrum, spin-spin and spin-lattice relaxation as well as spin-echo double resonance (SEDOR) in Na2CsC60 we show that these two different tetrahedral sites are mixed on a microscopic scale. The T and T' sites differ in the orientation of first-neighbor C60 molecules. We present evidence that the orientations of neighboring molecules are uncorrelated. Thermally activated molecular reorientations cause an exchange between the T and T' sites and motional narrowing at high temperature. We infer the same activation energy, 3300 K, in the temperature range 125 to 300 K. The spin lattice relaxation rate is the same for T and T' down to 125 K but different below. Both the spin-lattice relaxation rate and Knight shift are strongly temperature dependent in the whole range investigated. We interpret this temperature variation by the effect of phonon excitations involving the rigid librational motion of the C60 molecules. By extending the understanding of the structure and molecular dynamics of C60 superconductors, these results may help in clarifying the effects of the structure on the superconducting properties.Comment: 13 pages, 10 figures, submitted to PR

    Controlling coherence using the internal structure of hard pi pulses

    Full text link
    The tiny difference between hard pi pulses and their delta-function approximation can be exploited to control coherence. Variants on the magic echo that work despite a large spread in resonance offsets are demonstrated using the zeroth- and first-order average Hamiltonian terms, for 13-C NMR in C60. The 29-Si NMR linewidth of Silicon has been reduced by a factor of about 70,000 using this approach, which also has potential applications in magnetic resonance microscopy and imaging of solids.Comment: 4 pages, 4 color figure

    Second-order shaped pulses for solid-state quantum computation

    Full text link
    We present the constructon and detailed analysis of highly-optimized self-refocusing pulse shapes for several rotation angles. We characterize the constructed pulses by the coefficients appearing in the Magnus expansion up to second order. This allows a semi-analytical analysis of the performance of the constructed shapes in sequences and composite pulses by computing the corresponding leading-order error operators. Higher orders can be analyzed with the numerical technique suggested by us previously. We illustrate the technique by analysing several composite pulses designed to protect against pulse amplitude errors, and on decoupling sequences for potentially long chains of qubits with on-site and nearest-neighbor couplings.Comment: 16 pages, 29 figure

    Entanglement in a Solid State Spin Ensemble

    Full text link
    Entanglement is the quintessential quantum phenomenon and a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing (QIP) and the strongest forms of quantum cryptography. Spin ensembles, such as those in liquid state nuclear magnetic resonance, have been powerful in the development of quantum control methods, however, these demonstrations contained no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered phosphorus-doped silicon. We combined high field/low temperature electron spin resonance (3.4 T, 2.9 K) with hyperpolarisation of the 31P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% compared with the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, to 10^10 spin pairs, and represents an essential requirement of a silicon-based quantum information processor.Comment: 4 pages, 3 figures plus supporting information of 4 pages, 1 figure v2: Updated reference

    Charge Order Driven spin-Peierls Transition in NaV2O5

    Full text link
    We conclude from 23Na and 51V NMR measurements in NaxV2O5(x=0.996) a charge ordering transition starting at T=37 K and preceding the lattice distortion and the formation of a spin gap Delta=106 K at Tc=34.7 K. Above Tc, only a single Na site is observed in agreement with the Pmmn space group of this first 1/4-filled ladder system. Below Tc=34.7 K, this line evolves into eight distinct 23Na quadrupolar split lines, which evidences a lattice distortion with, at least, a doubling of the unit cell in the (a,b) plane. A model for this unique transition implying both charge density wave and spin-Peierls order is discussed.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    The Intrinsic Origin of Spin Echoes in Dipolar Solids Generated by Strong Pi Pulses

    Full text link
    In spectroscopy, it is conventional to treat pulses much stronger than the linewidth as delta-functions. In NMR, this assumption leads to the prediction that pi pulses do not refocus the dipolar coupling. However, NMR spin echo measurements in dipolar solids defy these conventional expectations when more than one pi pulse is used. Observed effects include a long tail in the CPMG echo train for short delays between pi pulses, an even-odd asymmetry in the echo amplitudes for long delays, an unusual fingerprint pattern for intermediate delays, and a strong sensitivity to pi-pulse phase. Experiments that set limits on possible extrinsic causes for the phenomena are reported. We find that the action of the system's internal Hamiltonian during any real pulse is sufficient to cause the effects. Exact numerical calculations, combined with average Hamiltonian theory, identify novel terms that are sensitive to parameters such as pulse phase, dipolar coupling, and system size. Visualization of the entire density matrix shows a unique flow of quantum coherence from non-observable to observable channels when applying repeated pi pulses.Comment: 24 pages, 27 figures. Revised from helpful referee comments. Added new Table IV, new paragraphs on pages 3 and 1
    • …
    corecore