103 research outputs found

    Impact of the stringency of cell selection on plastid segregation in protoplast fusion-derived Nicotiana regenerates.

    Get PDF
    Vegetative segregation of a mixed plastid population in protoplast fusion-derived cell lines can be directed by a selection favouring the multiplication of one of the parental plastid types. This report defines some of the critical conditions leading to a homogeneous plastid population in cybrid plants generated by protoplast fusion between Nicotiana plumbaginifolia and an albino and streptomycin-resistant N. tabacum plastid mutant. Light (1,500 Ix) conferred a strong selective advantage to chloroplasts versus albino plastids, while the lack of this effect in dim light (300 Ix) indicated that a sufficient light intensity is essential to the phenomenon. Selection on streptomycin-containing medium in the dark, however, led to the preferential multiplication of resistant plastids. Streptomycin selection of resistant chloroplasts in the light, consequently, results in a plastid selection of doubled stringency. In another experiment a definite, but leaky, selection for chloroplast recombination (selection for greening on streptomycin-containing medium in dim light) was used to reveal various recombination products. Protoplast fusion in fact resulted in cybrid plants showing only simple chimeric segregation of unchanged parental plastids. These results demonstrate the essential requirement for stringent plastid selection, as defined by cell culture conditions, to precede the formation of shoots expected to possess the desired plastid genetic composition

    Impact of the stringency of cell selection on plastid segregation in protoplast fusion-derived Nicotiana regenerates.

    Get PDF
    Vegetative segregation of a mixed plastid population in protoplast fusion-derived cell lines can be directed by a selection favouring the multiplication of one of the parental plastid types. This report defines some of the critical conditions leading to a homogeneous plastid population in cybrid plants generated by protoplast fusion between Nicotiana plumbaginifolia and an albino and streptomycin-resistant N. tabacum plastid mutant. Light (1,500 Ix) conferred a strong selective advantage to chloroplasts versus albino plastids, while the lack of this effect in dim light (300 Ix) indicated that a sufficient light intensity is essential to the phenomenon. Selection on streptomycin-containing medium in the dark, however, led to the preferential multiplication of resistant plastids. Streptomycin selection of resistant chloroplasts in the light, consequently, results in a plastid selection of doubled stringency. In another experiment a definite, but leaky, selection for chloroplast recombination (selection for greening on streptomycin-containing medium in dim light) was used to reveal various recombination products. Protoplast fusion in fact resulted in cybrid plants showing only simple chimeric segregation of unchanged parental plastids. These results demonstrate the essential requirement for stringent plastid selection, as defined by cell culture conditions, to precede the formation of shoots expected to possess the desired plastid genetic composition

    A Built-In Strategy for Containment of Transgenic Plants: Creation of Selectively Terminable Transgenic Rice

    Get PDF
    Plant transgenic technology has been widely utilized for engineering crops for trait improvements and for production of high value proteins such as pharmaceuticals. However, the unintended spreading of commercial transgenic crops by pollination and seed dispersal is a major concern for environmental and food safety. Simple and reliable containment strategies for transgenes are highly desirable. Here we report a novel method for creating selectively terminable transgenic rice. In this method, the gene(s) of interest is tagged with a RNA interference cassette, which specifically suppresses the expression of the bentazon detoxification enzyme CYP81A6 and thus renders transgenic rice to be sensitive to bentazon, a herbicide used for rice weed control. We generated transgenic rice plants by this method using a new glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Pesudomonas putida as the gene of interest, and demonstrated that these transgenic rice plants were highly sensitive to bentazon but tolerant to glyphosate, which is exactly the opposite of conventional rice. Field trial of these transgenic rice plants further confirmed that they can be selectively killed at 100% by one spray of bentazon at a regular dose used for conventional rice weed control. Furthermore, we found that the terminable transgenic rice created in this study shows no difference in growth, development and yield compared to its non-transgenic control. Therefore, this method of creating transgenic rice constitutes a novel strategy of transgene containment, which appears simple, reliable and inexpensive for implementation

    Complex chloroplast RNA metabolism: just debugging the genetic programme?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity.</p> <p>Results</p> <p>We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants.</p> <p>Conclusion</p> <p>Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.</p

    Inactivation of pollen and other effects of genome-plastome incompatibility in Oenothera

    Full text link
    A series of strains of the homozygous species Oenothera grandiflora (characterized by the genome BB and plastome III) were combined with plastome IV from O. parviflora (BC-IV) by means of appropriate crosses. An incompatibility between genome B and plastome IV is expressed in the haplo- and diplophase: (1) B-IV pollen, though normally developed, is largely inactive. The extent of the inactivation varies between different strains and shows a seasonal fluctuation as determined by seed set in outcrossing and selfing experiments. (2) In most of the strains lethality of BB-IV embryos is the rule, leading to empty seeds. This can be ameliorated by including another plastome in the zygotes and developing embryos on account of the biparental plastid transmission in Oenothera. It can best be demonstrated in crosses with a seed parent having normal green plastids of plastome IV and mutated chlorophyll deficient plastids from a different plastome in the pollen parent, leading to variegated progeny as well as a remainder of empty seeds. (3) In about one-half of the strains the BB-IV plants exhibit a temporary bleaching of the virescens type. The incompatibily between genome B and plastome IV does not support the earlier assumption that plastome IV is the ancestor of plastomes II, III, and V. Instead, a precursor plastome is postulated from which plastomes II, III, and IV are descended. While plastome I can be derived from II, only plastome V can be descended from plastome IV.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41640/1/606_2004_Article_BF00984370.pd

    Primary neuroendocrine neoplasm of the esophagus – Report of 14 cases from a single institute and review of the literature

    Full text link

    Interspecific chloroplast recombination in a Nicotiana somatic hybrid

    No full text

    Impact of the stringency of cell selection on plastid segregation in protoplast fusion-derived Nicotiana regenerates.

    No full text
    Vegetative segregation of a mixed plastid population in protoplast fusion-derived cell lines can be directed by a selection favouring the multiplication of one of the parental plastid types. This report defines some of the critical conditions leading to a homogeneous plastid population in cybrid plants generated by protoplast fusion between Nicotiana plumbaginifolia and an albino and streptomycin-resistant N. tabacum plastid mutant. Light (1,500 Ix) conferred a strong selective advantage to chloroplasts versus albino plastids, while the lack of this effect in dim light (300 Ix) indicated that a sufficient light intensity is essential to the phenomenon. Selection on streptomycin-containing medium in the dark, however, led to the preferential multiplication of resistant plastids. Streptomycin selection of resistant chloroplasts in the light, consequently, results in a plastid selection of doubled stringency. In another experiment a definite, but leaky, selection for chloroplast recombination (selection for greening on streptomycin-containing medium in dim light) was used to reveal various recombination products. Protoplast fusion in fact resulted in cybrid plants showing only simple chimeric segregation of unchanged parental plastids. These results demonstrate the essential requirement for stringent plastid selection, as defined by cell culture conditions, to precede the formation of shoots expected to possess the desired plastid genetic composition

    Impact of the stringency of cell selection on plastid segregation in protoplast fusion-derived Nicotiana regenerates.

    No full text
    Vegetative segregation of a mixed plastid population in protoplast fusion-derived cell lines can be directed by a selection favouring the multiplication of one of the parental plastid types. This report defines some of the critical conditions leading to a homogeneous plastid population in cybrid plants generated by protoplast fusion between Nicotiana plumbaginifolia and an albino and streptomycin-resistant N. tabacum plastid mutant. Light (1,500 Ix) conferred a strong selective advantage to chloroplasts versus albino plastids, while the lack of this effect in dim light (300 Ix) indicated that a sufficient light intensity is essential to the phenomenon. Selection on streptomycin-containing medium in the dark, however, led to the preferential multiplication of resistant plastids. Streptomycin selection of resistant chloroplasts in the light, consequently, results in a plastid selection of doubled stringency. In another experiment a definite, but leaky, selection for chloroplast recombination (selection for greening on streptomycin-containing medium in dim light) was used to reveal various recombination products. Protoplast fusion in fact resulted in cybrid plants showing only simple chimeric segregation of unchanged parental plastids. These results demonstrate the essential requirement for stringent plastid selection, as defined by cell culture conditions, to precede the formation of shoots expected to possess the desired plastid genetic composition
    • …
    corecore