157 research outputs found

    Viscous relaxation and collective oscillations in a trapped Fermi gas near the unitarity limit

    Full text link
    The viscous relaxation time of a trapped two-component gas of fermions in its normal phase is calculated as a function of temperature and scattering length, with the collision probability being determined by an energy-dependent s-wave cross section. The result is used for calculating the temperature dependence of the frequency and damping of collective modes studied in recent experiments, starting from the kinetic equation for the fermion distribution function with mean-field effects included in the streaming terms.Comment: 10 pages, 9 figures; proof version, corrected typo in Eq. (23); accepted for publication in PR

    Synthetic gauge fields in synthetic dimensions

    Full text link
    We describe a simple technique for generating a cold-atom lattice pierced by a uniform magnetic field. Our method is to extend a one-dimensional optical lattice into the "dimension" provided by the internal atomic degrees of freedom, yielding a synthetic 2D lattice. Suitable laser-coupling between these internal states leads to a uniform magnetic flux within the 2D lattice. We show that this setup reproduces the main features of magnetic lattice systems, such as the fractal Hofstadter butterfly spectrum and the chiral edge states of the associated Chern insulating phases.Comment: 5+4 pages, 5+3 figures, two-column revtex; v2: discussion of role of interactions added, Fig. 1 reshaped, minor changes, references adde

    Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential

    Get PDF
    A major challenge in modern physics is to accurately describe strongly interacting quantum many-body systems. One-dimensional systems provide fundamental insights since they are often amenable to exact methods. However, no exact solution is known for the experimentally relevant case of external confinement. Here, we propose a powerful ansatz for the one-dimensional Fermi gas in a harmonic potential near the limit of infinite short-range repulsion. For the case of a single impurity in a Fermi sea, we show that our ansatz is indistinguishable from numerically exact results in both the few- and many-body limits. We furthermore derive an effective Heisenberg spin-chain model corresponding to our ansatz, valid for any spin-mixture, within which we obtain the impurity eigenstates analytically. In particular, the classical Pascal's triangle emerges in the expression for the ground-state wavefunction. As well as providing an important benchmark for strongly correlated physics, our results are relevant for emerging quantum technologies, where a precise knowledge of one-dimensional quantum states is paramount

    Collective excitations of a trapped Bose-Einstein condensate in the presence of a 1D optical lattice

    Full text link
    We study low-lying collective modes of a horizontally elongated 87Rb condensate produced in a 3D magnetic harmonic trap with the addition of a 1D periodic potential which is provided by a laser standing-wave along the horizontal axis. While the transverse breathing mode results unperturbed, quadrupole and dipole oscillations along the optical lattice are strongly modified. Precise measurements of the collective mode frequencies at different height of the optical barriers provide a stringent test of the theoretical model recently introduced [M.Kraemer et al. Phys. Rev. Lett. 88 180404 (2002)].Comment: 4 pages, 4 figure

    Twin peaks in rf spectra of Fermi gases at unitarity

    Full text link
    We calculate the radio-frequency spectrum of balanced and imbalanced ultracold Fermi gases in the normal phase at unitarity. For the homogeneous case the spectrum of both the majority and minority components always has a single peak even in the pseudogap regime. We furthermore show how the double-peak structures observed in recent experiments arise due to the inhomogeneity of the trapped gas. The main experimental features observed above the critical temperature in the recent experiment of Schunck et al. [Science 316, 867, (2007)] are recovered with no fitting parameters.Comment: v3: version accepted for publication as a Rapid Communication in PRA. With respect to v2, minor changes in the text and in the inset of Fig.

    Spin polarons and molecules in strongly-interacting atomic Fermi gases

    Full text link
    We examine pairing and molecule formation in strongly-interacting Fermi gases, and we discuss how radio-frequency (RF) spectroscopy can reveal these features. For the balanced case, the emergence of stable molecules in the BEC regime results in a two-peak structure in the RF spectrum with clearly visible medium effects on the low-energy part of the molecular wavefunction. For the highly-imbalanced case, we show the existence of a well-defined quasiparticle (a spin polaron) on both sides of the Feshbach resonance, we evaluate its lifetime, and we illustrate how its energy may be measured by RF spectroscopy.Comment: 4 pages, 5 figures. Revised version accepted for publication: minor changes to Fig. 2 (added inset with the chemical potential at unitarity), to Fig. 3 (experimental data updated), and to the notatio

    Decay of polarons and molecules in a strongly polarized Fermi gas

    Full text link
    The ground state of an impurity immersed in a Fermi sea changes from a polaron to a molecule as the interaction strength is increased. We show here that the coupling between these two states is strongly suppressed due to a combination of phase space effects and Fermi statistics, and that it vanishes much faster than the energy difference between the two states, thereby confirming the first order nature of the polaron-molecule transition. In the regime where each state is metastable, we find quasiparticle lifetimes which are much longer than what is expected for a usual Fermi liquid. Our analysis indicates that the decay rates are sufficiently slow to be experimentally observable.Comment: Version accepted in PRL. Added discussion of three-body losses to deeply bound molecular state

    A strongly interacting Bose gas: Nozi\`eres and Schmitt-Rink theory and beyond

    Full text link
    We calculate the critical temperature for Bose-Einstein condensation in a gas of bosonic atoms across a Feshbach resonance, and show how medium effects at negative scattering lengths give rise to pairs reminiscent of the ones responsible for fermionic superfluidity. We find that the formation of pairs leads to a large suppression of the critical temperature. Within the formalism developed by Nozieres and Schmitt-Rink the gas appears mechanically stable throughout the entire crossover region, but when interactions between pairs are taken into account we show that the gas becomes unstable close to the critical temperature. We discuss prospects of observing these effects in a gas of ultracold Cs133 atoms where recent measurements indicate that the gas may be sufficiently long-lived to explore the many-body physics around a Feshbach resonance.Comment: 8 pages, 8 figures, RevTeX. Significantly expanded to include effects beyond NS

    Energy-dependent effective interactions for dilute many-body systems

    Full text link
    We address the issue of determining an effective two-body interaction for mean-field calculations of energies of many-body systems. We show that the effective interaction is proportional to the phase shift, and demonstrate this result in the quasiclassical approximation when there is a trapping potential in addition to the short-range interaction between a pair of particles. We calculate numerically energy levels for the case of an interaction with a short-range square-well and a harmonic trapping potential and show that the numerical results agree well with the analytical expression. We derive a generalized Gross--Pitaevskii equation which includes effective range corrections and discuss the form of the electron--atom effective interaction to be used in calculations of Rydberg atoms and molecules.Comment: 6 pages, 2 figure
    • …
    corecore