2,005 research outputs found

    A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    Get PDF
    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials

    Subcortical modulation in auditory processing and auditory hallucinations

    Get PDF
    Hearing perception in individuals with auditory hallucinations has not been well studied. Auditory hallucinations have previously been shown to involve primary auditory cortex activation. This activation suggests that auditory hallucinations activate the terminal of the auditory pathway as if auditory signals are submitted from the cochlea, and that a hallucinatory event is therefore perceived as hearing. The primary auditory cortex is stimulated by some unknown source that is outside of the auditory pathway. The current study aimed to assess the outcomes of stimulating the primary auditory cortex through the auditory pathway in individuals who have experienced auditory hallucinations. Sixteen patients with schizophrenia underwent functional magnetic resonance imaging (fMRI) sessions, as well as hallucination assessments. During the fMRI session, auditory stimuli were presented in one-second intervals at times when scanner noise was absent. Participants listened to auditory stimuli of sine waves (SW) (4-5.5kHz), English words (EW), and acoustically reversed English words (arEW) in a block design fashion. The arEW were employed to deliver the sound of a human voice with minimal linguistic components. Patients\u27 auditory hallucination severity was assessed by the auditory hallucination item of the Brief Psychiatric Rating Scale (BPRS). During perception of arEW when compared with perception of SW, bilateral activation of the globus pallidus correlated with severity of auditory hallucinations. EW when compared with arEW did not correlate with auditory hallucination severity. Our findings suggest that the sensitivity of the globus pallidus to the human voice is associated with the severity of auditory hallucination

    Nonet Symmetry and Two-Body Decays of Charmed Mesons

    Full text link
    The decay of charmed mesons into pseudoscalar (P) and vector (V) mesons is studied in the context of nonet symmetry. We have found that it is badly broken in the PP channels and in the P sector of the PV channels as expected from the non-ideal mixing of the \eta and the \eta'. In the VV channels, it is also found that nonet symmetry does not describe the data well. We have found that this discrepancy cannot be attributed entirely to SU(3) breaking at the usual level of 20--30%. At least one, or both, of nonet and SU(3) symmetry must be very badly broken. The possibility of resolving the problem in the future is also discussed.Comment: 9 pages, UTAPHY-HEP-

    The Lymnaea Cardioexcitatory Peptide (LyCEP) Receptor: A G-Protein–Coupled Receptor for a Novel Member of the RFamide Neuropeptide Family

    Get PDF
    A novel G-protein–coupled receptor (GRL106) resembling neuropeptide Y and tachykinin receptors was cloned from the molluscLymnaea stagnalis. Application of a peptide extract from the Lymnaea brain to Xenopus oocytes expressing GRL106 activated a calcium-dependent chloride channel. Using this response as a bioassay, we purified the ligand for GRL106,Lymnaea cardioexcitatory peptide (LyCEP), an RFamide-type decapeptide (TPHWRPQGRF-NH2) displaying significant similarity to the Achatina cardioexcitatory peptide (ACEP-1) as well as to the recently identified family of mammalian prolactin-releasing peptides. In the Lymnaeabrain, the cells that produce egg-laying hormone are the predominant site of GRL106 gene expression and appear to be innervated by LyCEP-containing fibers. Indeed, LyCEP application transiently hyperpolarizes isolated egg-laying hormone cells. In theLymnaea pericardium, LyCEP-containing fibers end blindly at the pericardial lumen, and the heart is stimulated by LyCEPin vitro. These data confirm that LyCEP is an RFamide ligand for GRL10

    Location of the Energy Levels of the Rare-Earth Ion in BaF2 and CdF2

    Full text link
    The location of the energy levels of rare-earth (RE) elements in the energy band diagram of BaF2 and CdF2 crystals is determined. The role of RE3+ and RE2+ ions in the capture of charge carriers, luminescence, and the formation of radiation defects is evaluated. It is shown that the substantial difference in the luminescence properties of BaF2:RE and CdF2:RE is associated with the location of the excited energy levels in the band diagram of the crystals

    Abnormal Resting State fMRI Activity Predicts Processing Speed Deficits in First-Episode Psychosis

    Get PDF
    Little is known regarding the neuropsychological significance of resting state functional magnetic resonance imaging (rs-fMRI) activity early in the course of psychosis. Moreover, no studies have used different approaches for analysis of rs-fMRI activity and examined gray matter thickness in the same cohort. In this study, 41 patients experiencing a first-episode of psychosis (including N = 17 who were antipsychotic drug-naive at the time of scanning) and 41 individually age-and sex-matched healthy volunteers completed rs-fMRI and structural MRI exams and neuropsychological assessments. We computed correlation matrices for 266 regions-of-interest across the brain to assess global connectivity. In addition, independent component analysis (ICA) was used to assess group differences in the expression of rs-fMRI activity within 20 predefined publicly available templates. Patients demonstrated lower overall rs-fMRI global connectivity compared with healthy volunteers without associated group differences in gray matter thickness assessed within the same regions-of-interest used in this analysis. Similarly, ICA revealed worse rs-fMRI expression scores across all 20 networks in patients compared with healthy volunteers, with posthoc analyses revealing significant (

    On parton distributions in a photon gas

    Full text link
    In some cases it may be useful to know parton distributions in a photon gas. This may be relevant, e.g., for the analysis of interactions of high energy cosmic ray particles with the cosmic microwave background radiation. The latter can be considered as a gas of photons with an almost perfect blackbody spectrum. An approach to finding such parton distributions is described. The survival probability of ultra-high energy neutrinos traveling through this radiation is calculated.Comment: 5 pages, 4 figures, EPJ style files. Some changes in the text. Two new sections discussing ultra-high energy neutrino damping in the cosmic microwave background radiation are include
    corecore