2,760 research outputs found

    Coupling between 4f and itinerant electrons in SmFeAsO1-xFx (0.15 < x < 0.2) superconductors: an NMR study

    Full text link
    19^{19}F NMR measurements in SmFeAsO1x_{1-x}Fx_x, for 0.15x0.20.15\leq x\leq 0.2, are presented. The nuclear spin-lattice relaxation rate 1/T11/T_1 increases upon cooling with a trend analogous to the one already observed in CeCu5.2_{5.2}Au0.8_{0.8}, a quasi two-dimensional heavy-fermion intermetallic compound with an antiferromagnetic ground-state. In particular, the behaviour of the relaxation rate either in SmFeAsO1x_{1-x}Fx_x or in CeCu5.2_{5.2}Au0.8_{0.8} can be described in the framework of the self-consistent renormalization theory for weakly itinerant electron systems. Remarkably, no effect of the superconducting transition on 19^{19}F 1/T11/T_1 is detected, a phenomenon which can hardly be explained within a single band model.Comment: 4 figure

    The onset of magnetism peaked around x=1/4 in optimally electron-doped LnFe(1-x)Ru(x)AsO(1-y)F(y) (Ln = La, Nd or Sm) superconductors

    Full text link
    The appearance of static magnetism, nanoscopically coexisting with superconductivity, is shown to be a general feature of optimally electron-doped LnFe(1-x)Ru(x)AsO(1-y)F(y) superconductor (Ln - lanthanide ion) upon isovalent substitution of Fe by Ru. The magnetic ordering temperature T_N and the magnitude of the internal field display a dome-like dependence on x, peaked around x=1/4, with higher T_N values for those materials characterized by a larger z cell coordinate of As. Remarkably, the latter are also those with the highest superconducting transition temperature (T_c) for x=0. The reduction of T_c(x) is found to be significant in the x region of the phase diagram where the static magnetism develops. Upon increasing the Ru content superconductivity eventually disappears, but only at x=0.6.Comment: accepted for publication in PR

    Direct evaluation of the isotope effect within the framework of density functional theory for superconductors

    Get PDF
    Within recent developments of density functional theory, its numerical implementation and of the superconducting density functional theory is nowadays possible to predict the superconducting critical temperature, Tc, with sufficient accuracy to anticipate the experimental verification. In this paper we present an analytical derivation of the isotope coefficient within the superconducting density functional theory. We calculate the partial derivative of Tc with respect to atomic masses. We verified the final expression by means of numerical calculations of isotope coefficient in monatomic superconductors (Pb) as well as polyatomic superconductors (CaC6). The results confirm the validity of the analytical derivation with respect to the finite difference methods, with considerable improvement in terms of computational time and calculation accuracy. Once the critical temperature is calculated (at the reference mass(es)), various isotope exponents can be simply obtained in the same run. In addition, we provide the expression of interesting quantities like partial derivatives of the deformation potential, phonon frequencies and eigenvectors with respect to atomic masses, which can be useful for other derivations and applications

    Correlated trends of coexisting magnetism and superconductivity in optimally electron-doped oxy-pnictides

    Full text link
    We report on the recovery of the short-range static magnetic order and on the concomitant degradation of the superconducting state in optimally F-doped SmFe_(1-x)Ru_(x)AsO_0.85F_0.15 for 0.1< x<0.6. The two reduced order parameters coexist within nanometer-size domains in the FeAs layers and finally disappear around a common critical threshold x_c=0.6. Superconductivity and magnetism are shown to be closely related to two distinct well-defined local electronic environments of the FeAs layers. The two transition temperatures, controlled by the isoelectronic and diamagnetic Ru substitution, scale with the volume fraction of the corresponding environments. This fact indicates that superconductivity is assisted by magnetic fluctuations, which are frozen whenever a short-range static order appears, and totally vanish above the magnetic dilution threshold x_c.Comment: Approved for publication in Phys. Rev. Letter

    The poisoning effect of Mn in LaFe(1-x)Mn(x)AsO(0.89)F(0.11): unveiling a quantum critical point in the phase diagram of iron-based superconductors

    Full text link
    A superconducting-to-magnetic transition is reported for LaFe1x_{1-x}Mnx_xAsO0.89_{0.89}F0.11_{0.11} where a per thousand amount of Mn impurities is dispersed. By employing local spectroscopic techniques like muon spin rotation (muSR) and nuclear quadrupole resonance (NQR) on compounds with Mn contents ranging from x=0.025% to x=0.75%, we find that the electronic properties are extremely sensitive to the Mn impurities. In fact, a small amount of Mn as low as 0.2% suppresses superconductivity completely. Static magnetism, involving the FeAs planes, is observed to arise for x > 0.1% and becomes further enhanced upon increasing Mn substitution. Also a progressive increase of low energy spin fluctuations, leading to an enhancement of the NQR spin-lattice relaxation rate 1/T1, is observed upon Mn substitution. The analysis of 1/T1 for the sample closest to the the crossover between superconductivity and magnetism (x = 0.2%) points towards the presence of an antiferromagnetic quantum critical point around that doping level.Comment: 11 pages, 10 figure

    Fast recovery of the stripe magnetic order by Mn/Fe substitution in F-doped LaFeAsO superconductors

    Full text link
    75^{75}As Nuclear Magnetic (NMR) and Quadrupolar (NQR) Resonance were used, together with M\"{o}ssbauer spectroscopy, to investigate the magnetic state induced by Mn for Fe substitutions in F-doped LaFe1x_{1-x}Mnx_{x}AsO superconductors. The results show that 0.50.5% of Mn doping is enough to suppress the superconducting transition temperature TcT_c from 27 K to zero and to recover the magnetic structure observed in the parent undoped LaFeAsO. Also the tetragonal to orthorhombic transition of the parent compound is recovered by introducing Mn, as evidenced by a sharp drop of the NQR frequency. The NQR spectra also show that a charge localization process is at play in the system. Theoretical calculations using a realistic five-band model show that correlation-enhanced RKKY exchange interactions between nearby Mn ions stabilize the observed magnetic order, dominated by Q1=(π,0)Q_1=(\pi,0) and Q2=(0,π)Q_2=(0,\pi) ordering vectors. These results give compelling evidence that F-doped LaFeAsO is a strongly correlated electron system at the verge of an electronic instability.Comment: 5 pages, 5 figures and 4 pages of supplemental materia

    AC susceptibility investigation of vortex dynamics in nearly-optimally doped REFeAsO1x_{1-x}Fx_{x} superconductors (RE = La, Ce, Sm)

    Full text link
    Ac susceptibility and static magnetization measurements were performed in the nearly-optimally doped LaFeAsO0.9_{0.9}F0.1_{0.1} and CeFeAsO0.92_{0.92}F0.08_{0.08} superconductors, complementing earlier results on SmFeAsO0.8_{0.8}F0.2_{0.2} [Phys. Rev. {\bf B 83}, 174514 (2011)]. The magnetic field -- temperature phase diagram of the mixed superconducting state is drawn for the three materials, displaying a sizeable reduction of the liquid phase upon increasing TcT_{c} in the range of applied fields (H5H \leq 5 T). This result indicates that SmFeAsO0.8_{0.8}F0.2_{0.2} is the most interesting compound among the investigated ones in view of possible applications. The field-dependence of the intra-grain depinning energy U0U_{0} exhibits a common trend for all the samples with a typical crossover field value (2500 Oe Hcr5000\lesssim H_{cr} \lesssim 5000 Oe) separating regions where single and collective depinning processes are at work. Analysis of the data in terms of a simple two-fluid picture for slightly anisotropic materials allows to estimate the zero-temperature penetration depth λab(0)\lambda_{ab}(0) and the anisotropy parameter γ\gamma for the three materials. Finally, a sizeable suppression of the superfluid density is deduced in a s±s^{\pm} two-gap scenario

    Nanoscopic coexistence of magnetic and superconducting states within the FeAs layers of CeFeAsO1-xFx

    Full text link
    We report on the coexistence of magnetic and superconducting states in CeFeAsO1-xFx for x=0.06(2), characterized by transition temperatures T_m=30 K and T_c=18 K, respectively. Zero and transverse field muon-spin relaxation measurements show that below 10 K the two phases coexist within a nanoscopic scale over a large volume fraction. This result clarifies the nature of the magnetic-to-superconducting transition in the CeFeAsO1-xFx phase diagram, by ruling out the presence of a quantum critical point which was suggested by earlier studies.Comment: 4 pages, 3 figs, accepted for publication as PRB Rapid com

    Mixing energy drinks and alcohol during adolescence impairs brain function: A study of rat hippocampal plasticity

    Get PDF
    In the last decades, the consumption of energy drinks has risen dramatically, especially among young people, adolescents and athletes, driven by the constant search for ergogenic effects, such as the increase in physical and cognitive performance. In parallel, mixed consumption of energy drinks and ethanol, under a binge drinking modality, under a binge drinking modality, has similarly grown among adolescents. However, little is known whether the combined consumption of these drinks, during adolescence, may have long-term effects on central function, raising the question of the risks of this habit on brain maturation. Our study was designed to evaluate, by behavioral, electrophysiological and molecular approaches, the long-term effects on hippocampal plasticity of ethanol (EtOH), energy drinks (EDs), or alcohol mixed with energy drinks (AMED) in a rat model of binge-like drinking adolescent administration. The results show that AMED binge-like administration produces adaptive hippocampal changes at the molecular level, associated with electrophysiological and behavioral alterations, which develop during the adolescence and are still detectable in adult animals. Overall, the study indicates that binge-like drinking AMED adolescent exposure represents a habit that may affect permanently hippocampal plasticity

    Star count density profiles and structural parameters of 26 Galactic globular clusters

    Get PDF
    We used a proper combination of high-resolution HST observations and wide-field ground based data to derive the radial star density profile of 26 Galactic globular clusters from resolved star counts (which can be all freely downloaded on-line). With respect to surface brightness (SB) profiles (which can be biased by the presence of sparse, bright stars), star counts are considered to be the most robust and reliable tool to derive cluster structural parameters. For each system a detailed comparison with both King and Wilson models has been performed and the most relevant best-fit parameters have been obtained. This is the largest homogeneous catalog collected so far of star count profiles and structural parameters derived therefrom. The analysis of the data of our catalog has shown that: (1) the presence of the central cusps previously detected in the SB profiles of NGC 1851, M13 and M62 is not confirmed; (2) the majority of clusters in our sample are fitted equally well by the King and the Wilson models; (3) we confirm the known relationship between cluster size (as measured by the effective radius) and galactocentric distances; (4) the ratio between the core and the effective radii shows a bimodal distribution, with a peak at ~ 0.3 for about 80% of the clusters, and a secondary peak at ~ 0.6 for the remaining 20%. Interestingly, the main peak turns out to be in agreement with what expected from simulations of cluster dynamical evolution and the ratio between these two radii well correlates with an empirical dynamical age indicator recently defined from the observed shape of blue straggler star radial distribution, thus suggesting that no exotic mechanisms of energy generation are needed in the cores of the analyzed clusters.Comment: Accepted for publication in The Astrophysical Journal; 19 pages (emulateapj style), 15 figures, 2 table
    corecore