33,969 research outputs found
Recommended from our members
Changing the way we learn: towards agile learning and co-operation
This paper addresses the need for learning and competence development in industrial organizations. The people that enter professional organizations today are part of a gamer generation that have some or much experience with on-line games. Therefore they are more open to e-learning and in general more open to access anything on-line. At the same time industrial organizations experience a pressure on their ability to train employees faster due to the increase in complexity. We argue that games are not yet mature enough to support this training challenge as stand alone efforts. But games can support the training and competence development in a synchronized setup with other means
Antiferromagnetic correlations and impurity broadening of NMR linewidths in cuprate superconductors
We study a model of a d-wave superconductor with strong potential scatterers
in the presence of antiferromagnetic correlations and apply it to experimental
nuclear magnetic resonance (NMR) results on Zn impurities in the
superconducting state of YBCO. We then focus on the contribution of
impurity-induced paramagnetic moments, with Hubbard correlations in the host
system accounted for in Hartree approximation. We show that local magnetism
around individual impurities broadens the line, but quasiparticle interference
between impurity states plays an important role in smearing out impurity
satellite peaks. The model, together with estimates of vortex lattice effects,
provides a semi-quantitative description of the impurity concentration
dependence of the NMR line shape in the superconducting state, and gives a
qualitative description of the temperature dependence of the line asymmetry. We
argue that impurity-induced paramagnetism and resonant local density of states
effects are both necessary to explain existing experiments.Comment: 15 pages, 23 figures, submitted to Phys. Rev.
Disorder-induced freezing of dynamical spin fluctuations in underdoped cuprates
We study the dynamical spin susceptibility of a correlated d-wave
superconductor (dSC) in the presence of disorder, using an unrestricted
Hartree-Fock approach. This model provides a concrete realization of the notion
that disorder slows down spin fluctuations, which eventually "freeze out". The
evolution of disorder-induced spectral weight transfer agrees qualitatively
with experimental observations on underdoped cuprate superconductors. For
sufficiently large disorder concentrations, static spin density wave (SDW)
order is created when droplets of magnetism nucleated by impurities overlap. We
also study the disordered stripe state coexisting with a dSC and compare its
magnetic fluctuation spectrum to that of the disorder-generated SDW phase.Comment: 5 pages, 4 figure
Extinction of quasiparticle interference in underdoped cuprates with coexisting order
Recent scanning tunnelling spectroscopy measurements [Y. Koksaka et al.,
Nature 454, 1072 (2008)] have shown that dispersing quasiparticle interference
peaks in Fourier transformed conductance maps disappear as the bias voltage
exceeds a certain threshold corresponding to the coincidence of the contour of
constant quasiparticle energy with the antiferromagnetic zone boundary. Here we
argue that this is caused by quasistatic short-range coexisting order present
in the d-wave superconducting phase, and that the most likely origin of this
order is disorder-induced incommensurate antiferromagnetism. We show explicitly
how the peaks are extinguished in the related situation with coexisting
long-range antiferromagnetic order, and discuss the connection with the
realistic disordered case. Since it is the localized quasiparticle interference
peaks rather than the underlying antinodal states themselves which are
destroyed at a critical bias, our proposal resolves a conflict between scanning
tunneling spectroscopy and photoemission regarding the nature of these states.Comment: 10 pages, 9 figure
Disorder-Induced Static Antiferromagnetism in Cuprate Superconductors
Using model calculations of a disordered d-wave superconductor with on-site
Hubbard repulsion, we show how dopant disorder can stabilize novel states with
antiferromagnetic order. We find that the critical strength of correlations or
impurity potential necessary to create an ordered magnetic state in the
presence of finite disorder is reduced compared to that required to create a
single isolated magnetic droplet. This may explain why in cuprates like LSCO
low-energy probes have identified a static magnetic component which persists
well into the superconducting state, whereas in cleaner systems like YBCO it is
absent or minimal. Finally we address the case of nominally clean LSCO samples
at optimal doping, where such ordered magnetic moments are absent, but where
they can be induced by small concentrations of strong scatterers.Comment: 4 pages, 5 figure
Origin of electronic dimers in the spin-density wave phase of Fe-based superconductors
We investigate the emergent impurity-induced states arising from point-like
scatterers in the spin-density wave phase of iron-based superconductors within
a microscopic five-band model. Independent of the details of the band-structure
and disorder potential, it is shown how stable magnetic (pi,pi) unidirectional
nematogens are formed locally by the impurities. Interestingly, these
nematogens exhibit a dimer structure in the electronic density, are directed
along the antiferromagnetic a-axis, and have typical lengths of order 10
lattice constants in excellent agreement with recent scanning tunnelling
experiments. These electronic dimers provide a natural explanation of the
dopant-induced transport anisotropy found e.g. in the 122 iron pnictides.Comment: 5 pages, 4 figure
Impurity states and cooperative magnetic order in Fe-based superconductors
We study impurity bound states and impurity-induced order in the
superconducting state of LiFeAs within a realistic five-band model based on the
band structure and impurity potentials obtained from density functional theory
(DFT). In agreement with recent experiments, we find that Co impurities are too
weak produce sub-gap bound states, whereas stronger impurities like Cu do. We
also obtain the bound state spectrum for magnetic impurities, such as Mn, and
show how spin-resolved tunnelling may determine the nature of the various
defect sites in iron pnictides, a prerequisite for using impurity bound states
as a probe of the ground state pairing symmetry. Lastly we show how impurities
pin both orbital and magnetic order, providing an explanation for a growing set
of experimental evidence for unusual magnetic phases in doped iron pnictides.Comment: 5 pages, 5 fig
Raising the critical temperature by disorder in unconventional superconductors mediated by spin fluctuations
We propose a mechanism whereby disorder can enhance the transition
temperature Tc of an unconventional superconductor with pairing driven by
exchange of spin fluctuations. The theory is based on a self-consistent real
space treatment of pairing in the disordered one-band Hubbard model. It has
been demonstrated before that impurities can enhance pairing by softening the
spin fluctuations locally; here, we consider the competing effect of
pair-breaking by the screened Coulomb potential also present. We show that,
depending on the impurity potential strength and proximity to magnetic order,
this mechanism results in a weakening of the disorder-dependent Tc-suppression
rate expected from Abrikosov-Gor'kov theory, or even in disorder-generated Tc
enhancements.Comment: 6 pages, 4 figures + Supplementary Materia
- …