240,263 research outputs found

    Standing waves in the Lorentz-covariant world

    Full text link
    When Einstein formulated his special relativity, he developed his dynamics for point particles. Of course, many valiant efforts have been made to extend his relativity to rigid bodies, but this subject is forgotten in history. This is largely because of the emergence of quantum mechanics with wave-particle duality. Instead of Lorentz-boosting rigid bodies, we now boost waves and have to deal with Lorentz transformations of waves. We now have some understanding of plane waves or running waves in the covariant picture, but we do not yet have a clear picture of standing waves. In this report, we show that there is one set of standing waves which can be Lorentz-transformed while being consistent with all physical principle of quantum mechanics and relativity. It is possible to construct a representation of the Poincar\'e group using harmonic oscillator wave functions satisfying space-time boundary conditions. This set of wave functions is capable of explaining the quantum bound state for both slow and fast hadrons. In particular it can explain the quark model for hadrons at rest, and Feynman's parton model hadrons moving with a speed close to that of light.Comment: LaTex 20 pages, presented at the 2004 meeting of the International Association of Relativistic Dynamincs, to be published in the proceeding

    Feynman's Decoherence

    Get PDF
    Gell-Mann's quarks are coherent particles confined within a hadron at rest, but Feynman's partons are incoherent particles which constitute a hadron moving with a velocity close to that of light. It is widely believed that the quark model and the parton model are two different manifestations of the same covariant entity. If this is the case, the question arises whether the Lorentz boost destroys coherence. It is pointed out that this is not the case, and it is possible to resolve this puzzle without inventing new physics. It is shown that this decoherence is due to the measurement processes which are less than complete.Comment: RevTex 15 pages including 6 figs, presented at the 9th Int'l Conference on Quantum Optics (Raubichi, Belarus, May 2002), to be published in the proceeding

    Coupled oscillators and Feynman's three papers

    Get PDF
    According to Richard Feynman, the adventure of our science of physics is a perpetual attempt to recognize that the different aspects of nature are really different aspects of the same thing. It is therefore interesting to combine some, if not all, of Feynman's papers into one. The first of his three papers is on the ``rest of the universe'' contained in his 1972 book on statistical mechanics. The second idea is Feynman's parton picture which he presented in 1969 at the Stony Brook conference on high-energy physics. The third idea is contained in the 1971 paper he published with his students, where they show that the hadronic spectra on Regge trajectories are manifestations of harmonic-oscillator degeneracies. In this report, we formulate these three ideas using the mathematics of two coupled oscillators. It is shown that the idea of entanglement is contained in his rest of the universe, and can be extended to a space-time entanglement. It is shown also that his parton model and the static quark model can be combined into one Lorentz-covariant entity. Furthermore, Einstein's special relativity, based on the Lorentz group, can also be formulated within the mathematical framework of two coupled oscillators.Comment: 31 pages, 6 figures, based on the concluding talk at the 3rd Feynman Festival (Collage Park, Maryland, U.S.A., August 2006), minor correction

    Generalized BFT Formalism of Electroweak Theory in the Unitary Gauge

    Full text link
    We systematically embed the SU(2)Ă—\timesU(1) Higgs model in the unitary gauge into a fully gauge-invariant theory by following the generalized BFT formalism. We also suggest a novel path to get a first-class Lagrangian directly from the original second-class one using the BFT fields.Comment: 14 pages, Latex, no figure

    Consequences of Cadmium exposure on growth and reproduction across three generations of earthworm

    Get PDF
    Heavy metal pollution disturbs the soil ecosystem by negatively affecting soil fauna and flora. In term of biomass and activity Annelids are a very important part of the soil invertebrate community. They are one of the first organisms affected by heavy metal contamination in soil and as such are good model organisms for assessing soil contamination. The aim of this research is to observe how Cd impacts on health and reproduction in three consecutive generations of E. fetida. [...]falseOnlin

    The Backreacted K\"ahler Geometry of Wrapped Branes

    Full text link
    For supersymmetric solutions of D3(M2) branes with AdS3(AdS2) factor, it is known that the internal space is expressible as U(1) fibration over K\"ahler space which satisfies a specific partial differential equation involving the Ricci tensor. In this paper we study the wrapped brane solutions of D3 and M2-branes which were originally constructed using gauged supergravity and uplifted to D=10 and D=11. We rewrite the solutions in canonical form, identify the backreacted K\"ahler geometry, and present a class of solutions which satisfy the Killing spinor equation.Comment: v2: 13 pages, refs adde

    The effect of a suggestive interview on children’s memory of a repeated event: Does it matter whether suggestions are linked to a particular incident?

    Get PDF
    This study examined the impact of linking misleading information to a particular occurrence of a repeated event. Children aged 5- to 6-years took part in the same staged event four times and 16 target details varied in each occurrence (e.g., the colour of a cloak varied each time). Three days or three weeks later they were asked questions, some of which included false information, about the final occurrence. The next day, the children were required to recall what happened in the final occurrence. Compared to children whose biasing interview was not focused on any particular occurrence of the repeated event, linking the biasing interview to the final occurrence increased the number of suggested details that were reported. Interestingly, the children whose biasing interview was not focused on any occurrence were also less likely to report the false suggestions than another group of children who had only experienced the event once and whose biasing interview was linked to that single occurrence. These findings have implications for how lawyers and investigative interviewers question children about multiple incidents

    Bandwidth-control vs. doping-control Mott transition in the Hubbard model

    Full text link
    We reinvestigate the bandwidth-control and doping-control Mott transitions (BCMT and DCMT) from a spin liquid Mott insulator to a Fermi liquid metal based on the slave-rotor representation of the Hubbard model,\cite{Florens} where the Mott transitions are described by softening of bosonic collective excitations. We find that the nature of the insulating phase away from half filling is different from that of half filling in the respect that a charge density wave coexists with a topological order (spin liquid) away from half filling because the condensation of vortices generically breaks translational symmetry in the presence of "dual magnetic fields" resulting from hole doping while the topological order remains stable owing to gapless excitations near the Fermi surface. Performing a renormalization group analysis, we discuss the role of dissipative gauge fluctuations due to the Fermi surface in both the BCMT and the DCMT

    Model study of the sign problem in the mean-field approximation

    Full text link
    We argue the sign problem of the fermion determinant at finite density. It is unavoidable not only in Monte-Carlo simulations on the lattice but in the mean-field approximation as well. A simple model deriving from Quantum Chromodynamics (QCD) in the double limit of large quark mass and large quark chemical potential exemplifies how the sign problem arises in the Polyakov loop dynamics at finite temperature and density. In the color SU(2) case our mean-field estimate is in excellent agreement with the lattice simulation. We combine the mean-field approximation with a simple phase reweighting technique to circumvent the complex action encountered in the color SU(3) case. We also investigate the mean-field free energy, from the saddle-point of which we can estimate the expectation value of the Polyakov loop.Comment: 14 page, 18 figures, typos corrected, references added, some clarification in sec.I

    Ideal Bose gas in fractal dimensions and superfluid 4^4He in porous media

    Full text link
    Physical properties of ideal Bose gas with the fractal dimensionality between D=2 and D=3 are theoretically investigated. Calculation shows that the characteristic features of the specific heat and the superfluid density of ideal Bose gas in fractal dimensions are strikingly similar to those of superfluid Helium-4 in porous media. This result indicates that the geometrical factor is dominant over mutual interactions in determining physical properties of Helium-4 in porous media.Comment: 13 pages, 6 figure
    • …
    corecore