545 research outputs found

    Hawking Radiation for Non-minimally Coupled Matter from Generalized 2D Black Hole Models

    Get PDF
    It is well known that spherically symmetric reduction of General Relativity (SSG) leads to non-minimally coupled scalar matter. We generalize (and correct) recent results to Hawking radiation for a class of dilaton models which share with the Schwarzschild black hole non-minimal coupling of scalar fields and the basic global structure. An inherent ambiguity of such models (if they differ from SSG) is discussed. However, for SSG we obtain the rather disquieting result of a negative Hawking flux at infinity, if the usual recipe for such calculations is applied.Comment: 8 page

    Type 0A 2D Black Hole Thermodynamics and the Deformed Matrix Model

    Full text link
    Recently, it has been proposed that the deformed matrix model describes a two-dimensional type 0A extremal black hole. In this paper, the thermodynamics of 0A charged non-extremal black holes is investigated. We observe that the free energy of the deformed matrix model to leading order in 1/q can be seen to agree to that of the extremal black hole. We also speculate on how the deformed matrix model is able to describe the thermodynamics of non-extremal black holes.Comment: 12 page

    Non-existence of a dilaton gravity action for the exact string black hole

    Full text link
    We prove that no local diffeomorphism invariant two-dimensional theory of the metric and the dilaton without higher derivatives can describe the exact string black hole solution found a decade ago by Dijkgraaf, Verlinde and Verlinde. One of the key points in this proof is the concept of dilaton-shift invariance. We present and solve (classically) all dilaton-shift invariant theories of two-dimensional dilaton gravity. Two such models, resembling the exact string black hole and generalizing the CGHS model, are discussed explicitly.Comment: 24 pages, 3 eps-figures, revised version (more references, clarified some of the discussion

    Dimerization of visinin-like protein 1 is regulated by oxidative stress and calcium and is a pathological hallmark of amyotrophic lateral sclerosis

    Get PDF
    AbstractRedox control of proteins that form disulfide bonds upon oxidative challenge is an emerging topic in the physiological and pathophysiological regulation of protein function. We have investigated the role of the neuronal calcium sensor protein visinin-like protein 1 (VILIP-1) as a novel redox sensor in a cellular system. We have found oxidative stress to trigger dimerization of VILIP-1 within a cellular environment and identified thioredoxin reductase as responsible for facilitating the remonomerization of the dimeric protein. Dimerization is modulated by calcium and not dependent on the myristoylation of VILIP-1. Furthermore, we show by site-directed mutagenesis that dimerization is exclusively mediated by Cys187. As a functional consequence, VILIP-1 dimerization modulates the sensitivity of cells to an oxidative challenge. We have investigated whether dimerization of VILIP-1 occurs in two different animal models of amyotrophic lateral sclerosis (ALS) and detected soluble VILIP-1 dimers to be significantly enriched in the spinal cord from phenotypic disease onset onwards. Moreover, VILIP-1 is part of the ALS-specific protein aggregates. We show for the first time that the C-terminus of VILIP-1, containing Cys187, might represent a novel redox-sensitive motif and that VILIP-1 dimerization and aggregation are hallmarks of ALS. This suggests that VILIP-1 dimers play a functional role in integrating the cytosolic calcium concentration and the oxidative status of the cell. Furthermore, a loss of VILIP-1 function owing to protein aggregation in ALS could be relevant in the pathophysiology of the disease

    Geometric Interpretation and Classification of Global Solutions in Generalized Dilaton Gravity

    Get PDF
    Two dimensional gravity with torsion is proved to be equivalent to special types of generalized 2d dilaton gravity. E.g. in one version, the dilaton field is shown to be expressible by the extra scalar curvature, constructed for an independent Lorentz connection corresponding to a nontrivial torsion. Elimination of that dilaton field yields an equivalent torsionless theory, nonpolynomial in curvature. These theories, although locally equivalent exhibit quite different global properties of the general solution. We discuss the example of a (torsionless) dilaton theory equivalent to the R2+T2R^2 + T^2--model. Each global solution of this model is shown to split into a set of global solutions of generalized dilaton gravity. In contrast to the theory with torsion the equivalent dilaton one exhibits solutions which are asymptotically flat in special ranges of the parameters. In the simplest case of ordinary dilaton gravity we clarify the well known problem of removing the Schwarzschild singularity by a field redefinition.Comment: 21 pages, 6 Postscript figure

    Long time black hole evaporation with bounded Hawking flux

    Full text link
    The long time behavior of an evaporating Schwarzschild black hole is studied exploiting that it can be described by an effective theory in 2D, a particular dilaton gravity model. A crucial technical ingredient is Izawa's result on consistent deformations of 2D BF theory, while the most relevant physical assumption is boundedness of the asymptotic matter flux during the whole evaporation process. An attractor solution, the endpoint of the evaporation process, is found. Its metric is flat. However, the behavior of the dilaton field is nontrivial: it is argued that during the final flicker a first order phase transition occurs from a linear to a constant dilaton vacuum, thereby emitting a shock wave with a total energy of a fraction of the Planck mass. Another fraction of the Planck mass may reside in a cold remnant. [Note: More detailed abstract in the paper]Comment: 34 pages, 6 figures, v2: included new references and 2 new footnotes; v3: mayor revisions (extended intro, included pedagogical example, rearranged presentation, extended discussion on information paradox, updated references); v4: updated refs. (+ new ones), added comments, mostly on dilaton evaporation, rewrote abstract (short for arXiv, long for journal), moved pedagogic sec. to ap

    An action for the exact string black hole

    Full text link
    A local action is constructed describing the exact string black hole discovered by Dijkgraaf, Verlinde and Verlinde in 1992. It turns out to be a special 2D Maxwell-dilaton gravity theory, linear in curvature and field strength. Two constants of motion exist: mass M>1, determined by the level k, and U(1)-charge Q>0, determined by the value of the dilaton at the origin. ADM mass, Hawking temperature T_H \propto \sqrt{1-1/M} and Bekenstein-Hawking entropy are derived and studied in detail. Winding/momentum mode duality implies the existence of a similar action, arising from a branch ambiguity, which describes the exact string naked singularity. In the strong coupling limit the solution dual to AdS_2 is found to be the 5D Schwarzschild black hole. Some applications to black hole thermodynamics and 2D string theory are discussed and generalizations - supersymmetric extension, coupling to matter and critical collapse, quantization - are pointed out.Comment: 41 pages, 2 eps figures, dedicated to Wolfgang Kummer on occasion of his Emeritierung; v2: added ref; v3: extended discussion in sections 3.2, 3.3 and at the end of 5.3 by adding 2 pages of clarifying text; updated refs; corrected typo
    corecore