2,610 research outputs found

    The dynamics of generalized Palatini Theories of Gravity

    Full text link
    It is known that in f(R) theories of gravity with an independent connection which can be both non-metric and non symmetric, this connection can always be algebraically eliminated in favour of the metric and the matter fields, so long as it is not coupled to the matter explicitly. We show here that this is a special characteristic of f(R) actions, and it is not true for actions that include other curvature invariants. This contradicts some recent claims in the literature. We clarify the reasons of this contradiction.Comment: v1: 6 pages; v2: minor changes to match published versio

    The dynamics of metric-affine gravity

    Full text link
    Metric-affine theories of gravity provide an interesting alternative to General Relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy theories to study the properties of metric-affine gravity.Comment: 26 pages. v2: some footnotes, references and minor changes added to match the published version. v3: some equations corrected to account for a term that had been missed, results unaffecte

    Scale hierarchy in Horava-Lifshitz gravity: a strong constraint from synchrotron radiation in the Crab nebula

    Full text link
    Horava-Lifshitz gravity models contain higher order operators suppressed by a characteristic scale, which is required to be parametrically smaller than the Planck scale. We show that recomputed synchrotron radiation constraints from the Crab nebula suffice to exclude the possibility that this scale is of the same order of magnitude as the Lorentz breaking scale in the matter sector. This highlights the need for a mechanism that suppresses the percolation of Lorentz violation in the matter sector and is effective for higher order operators as well.Comment: 4 page, 2 figures; v2: minor changes to match published versio

    Gedanken experiments on nearly extremal black holes and the Third Law

    Full text link
    A gedanken experiment in which a black hole is pushed to spin at its maximal rate by tossing into it a test body is considered. After demonstrating that this is kinematically possible for a test body made of reasonable matter, we focus on its implications for black hole thermodynamics and the apparent violation of the third law (unattainability of the extremal black hole). We argue that this is not an actual violation, due to subtleties in the absorption process of the test body by the black hole, which are not captured by the purely kinematic considerations.Comment: v2: minor edits, references added; v3: minor edits to match published versio

    Reply to "Can gravitational dynamics be obtained by diffeomorphism invariance of action?"

    Get PDF
    In a previous work we showed that, in a suitable setting, one can use diffeomorphism invariance in order to derive gravitational field equations from boundary terms of the gravitational action. Standing by our results we reply here to a recent comment questioning their validity.Comment: Accepted for publication in PR

    Analogue Cosmological Particle Creation: Quantum Correlations in Expanding Bose Einstein Condensates

    Full text link
    We investigate the structure of quantum correlations in an expanding Bose Einstein Condensate (BEC) through the analogue gravity framework. We consider both a 3+1 isotropically expanding BEC as well as the experimentally relevant case of an elongated, effectively 1+1 dimensional, expanding condensate. In this case we include the effects of inhomogeneities in the condensate, a feature rarely included in the analogue gravity literature. In both cases we link the BEC expansion to a simple model for an expanding spacetime and then study the correlation structure numerically and analytically (in suitable approximations). We also discuss the expected strength of such correlation patterns and experimentally feasible BEC systems in which these effects might be detected in the near future.Comment: Reference adde
    • …
    corecore