12 research outputs found
Immunochemical analysis of cathepsin B in lung tumours: an independent prognostic factor for squamous cell carcinoma patients
In order to evaluate the possible role of the proteolytic enzyme cathepsin B (cath B) in human non-small cell lung cancer (NSCLC) we examined cath B concentrations (cath Bc) and activities (cath BA) in homogenates of 127 pairs of lung tumour tissues and corresponding non-tumourous lung parenchyma. Total cath B activity (cath BAT) and enzymatic activity of the fraction of cath B, which is stable and active at pH 7.5 (cath BA7.5) were determined by a fluorogenic assay using synthetic substrate Z-Arg-Arg-AMC. The immunostaining pattern of cath B was determined in 239 lung tumour tissue sections, showing the presence of the enzyme in tumour cells (cath BT-I) and in tumour-associated histiocytes (cath BH-I). The median levels of cath BAT, cath BA7.5 and cath BC were 5.6-, 3.2- and 9.1-fold higher (P < 0.001), respectively, in tumour tissue than in non-tumourous lung parenchyma. Out of 131 tissue sections from patients with squamous cell carcinoma (SCC), 59.5% immunostained positively for cath B, while among the 108 adenocarcinoma (AC) patients 48.2% of tumours showed a positive reaction. There was a strong relationship between the levels of cath BAT, cath BA7.5, cath BC and cath BT-I in the primary tumours and the presence of lymph node metastases. Significant correlation with overall survival was observed for cath BT-I and cath BA7.5 (P < 0.01 and P < 0.05, respectively) in patients suffering from SCC. In these patients positive cath B in tumour cells (cath BT-I) and negative cath B in histiocytes (cath BH-I) indicated significantly shorter survival rate compared with patients with negative cath BT-I and positive cath BH-I (P < 0.0001). In contrast, in AC patients, both, positive cath BT-I and positive cath BH-I, indicated poor survival probability (P < 0.014). From these results we conclude that the proteolytic enzyme cath B is an independent prognostic factor for overall survival of patients suffering from SCC of the lung. © 1999 Cancer Research Campaig
Cloud4SOA: A Semantic-Interoperability PaaS Solution for Multi-cloud Platform Management and Portability
Cloud Platform as a Service (PaaS) is a novel, rapidly growing segment in the Cloud computing market. However, the diversity and heterogeneity of today's existing PaaS offerings raises several interoperability challenges. This introduces adoption barriers due to the lock-in issues that prevent the portability of data and applications from one PaaS to another, "locking" software developers to the first provider they use. This paper introduces the Cloud4SOA solution, a scalable approach to semantically interconnect heterogeneous PaaS offerings across different Cloud providers that share the same technology. The design of the Cloud4SOA solution, extensively presented in this work, comprises of a set of interlinked collaborating software components and models to provide developers and platform providers with a number of core capabilities: matchmaking, management, monitoring and migration of applications. The paper concludes with the presentation of a proof-of-concept implem entation of the Cloud4SOA system based on real-life business scenarios