1 research outputs found

    Diffusion, Fragmentation and Coagulation Processes: Analytical and Numerical Results

    Full text link
    We formulate dynamical rate equations for physical processes driven by a combination of diffusive growth, size fragmentation and fragment coagulation. Initially, we consider processes where coagulation is absent. In this case we solve the rate equation exactly leading to size distributions of Bessel type which fall off as exp(x3/2)\exp(-x^{3/2}) for large xx-values. Moreover, we provide explicit formulas for the expansion coefficients in terms of Airy functions. Introducing the coagulation term, the full non-linear model is mapped exactly onto a Riccati equation that enables us to derive various asymptotic solutions for the distribution function. In particular, we find a standard exponential decay, exp(x)\exp(-x), for large xx, and observe a crossover from the Bessel function for intermediate values of xx. These findings are checked by numerical simulations and we find perfect agreement between the theoretical predictions and numerical results.Comment: (28 pages, 6 figures, v2+v3 minor corrections
    corecore