1,775 research outputs found
Effects of Two Toxin-Producing Harmful Algae, Alexandrium catenella and Dinophysis acuminata (Dinophyceae), on Activity and Mortality of Larval Shellfish
Harmful algal bloom (HAB) species Alexandrium catenella and Dinophysis acuminata are associated with paralytic shellfish poisoning (PSP) and diarrhetic shellfish poisoning (DSP) in humans, respectively. While PSP and DSP have been studied extensively, less is known about the effects of these HAB species or their associated toxins on shellfish. This study investigated A. catenella and D. acuminata toxicity in a larval oyster (Crassostrea virginica) bioassay. Larval activity and mortality were examined through 96-h laboratory exposures to live HAB cells (10–1000 cells/mL), cell lysates (1000 cells/mL equivalents), and purified toxins (10,000 cells/mL equivalents). Exposure to 1000 cells/mL live or lysed D. acuminata caused larval mortality (21.9 ± 7.0%, 10.2 ± 4.0%, respectively) while exposure to any tested cell concentration of live A. catenella, but not lysate, caused swimming arrest and/or mortality in \u3e50% of larvae. Exposure to high concentrations of saxitoxin (STX) or okadaic acid (OA), toxins traditionally associated with PSP and DSP, respectively, had no effect on larval activity or mortality. In contrast, pectenotoxin-2 (PTX2) caused rapid larval mortality (49.6 ± 5.8% by 48 h) and completely immobilized larval oysters. The results indicate that the toxic effects of A. catenella and D. acuminata on shellfish are not linked to the primary toxins associated with PSP and DSP in humans, and that PTX2 is acutely toxic to larval oysters
Effects of two toxin-producing harmful algae, Alexandrium catenella and Dinophysis acuminata (Dinophyceae), on activity and mortality of larval shellfish
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pease, S. K. D., Brosnahan, M. L., Sanderson, M. P., & Smith, J. L. Effects of two toxin-producing harmful algae, Alexandrium catenella and Dinophysis acuminata (Dinophyceae), on activity and mortality of larval shellfish. Toxins, 14(5), (2022): 335, https://doi.org/10.3390/toxins14050335.Harmful algal bloom (HAB) species Alexandrium catenella and Dinophysis acuminata are associated with paralytic shellfish poisoning (PSP) and diarrhetic shellfish poisoning (DSP) in humans, respectively. While PSP and DSP have been studied extensively, less is known about the effects of these HAB species or their associated toxins on shellfish. This study investigated A. catenella and D. acuminata toxicity in a larval oyster (Crassostrea virginica) bioassay. Larval activity and mortality were examined through 96-h laboratory exposures to live HAB cells (10–1000 cells/mL), cell lysates (1000 cells/mL equivalents), and purified toxins (10,000 cells/mL equivalents). Exposure to 1000 cells/mL live or lysed D. acuminata caused larval mortality (21.9 ± 7.0%, 10.2 ± 4.0%, respectively) while exposure to any tested cell concentration of live A. catenella, but not lysate, caused swimming arrest and/or mortality in >50% of larvae. Exposure to high concentrations of saxitoxin (STX) or okadaic acid (OA), toxins traditionally associated with PSP and DSP, respectively, had no effect on larval activity or mortality. In contrast, pectenotoxin-2 (PTX2) caused rapid larval mortality (49.6 ± 5.8% by 48 h) and completely immobilized larval oysters. The results indicate that the toxic effects of A. catenella and D. acuminata on shellfish are not linked to the primary toxins associated with PSP and DSP in humans, and that PTX2 is acutely toxic to larval oysters.This research was partially funded by the National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science Competitive Research, Ecology and Oceanography of Harmful Algal Blooms Program under award #NA19NOS4780182 to J.L.S. (VIMS) and M.L.B (WHOI), and by a William & Mary, School of Marine Science, Student Research Grant to S.K.D.P. (VIMS). This paper is ECOHAB publication number 1022
Solving the liar detection problem using the four-qubit singlet state
A method for solving the Byzantine agreement problem [M. Fitzi, N. Gisin, and
U. Maurer, Phys. Rev. Lett. 87, 217901 (2001)] and the liar detection problem
[A. Cabello, Phys. Rev. Lett. 89, 100402 (2002)] is introduced. The main
advantages of this protocol are that it is simpler and is based on a four-qubit
singlet state already prepared in the laboratory.Comment: REVTeX4, 4 page
Post-Turing Methodology: Breaking the Wall on the Way to Artificial General Intelligence
This article offers comprehensive criticism of the Turing test and develops quality criteria for new artificial general intelligence (AGI) assessment tests. It is shown that the prerequisites A. Turing drew upon when reducing personality and human consciousness to “suitable branches of thought” re-flected the engineering level of his time. In fact, the Turing “imitation game” employed only symbolic communication and ignored the physical world. This paper suggests that by restricting thinking ability to symbolic systems alone Turing unknowingly constructed “the wall” that excludes any possi-bility of transition from a complex observable phenomenon to an abstract image or concept. It is, therefore, sensible to factor in new requirements for AI (artificial intelligence) maturity assessment when approaching the Tu-ring test. Such AI must support all forms of communication with a human being, and it should be able to comprehend abstract images and specify con-cepts as well as participate in social practices
First generation immigrant judgements of offence seriousness: evidence from the crime survey for England and Wales
This exploratory paper delves into differences and similarities in the rated seriousness of offences suffered by victims of different national origin. The issue is important because a mismatch between police and victim assessments of seriousness is likely to fuel discord. It was found that first generation immigrants did not differ in their rating of the seriousness of offences against the person from either the indigenous population or according to region of birth. However those of Asian origin rated vehicle and property crime they had suffered as more serious than did other groups about crimes they suffered. The anticipated higher seriousness rating of offences reported to the police r was observed for all groups. People of Asian origin reported to the police a smaller proportion of offences they rated trivial than did people in other groups. Analysis of seriousness judgements in victimization surveys represents a much-underused resource for understanding the nexus between public perceptions and criminal justice responses
Association of FCGR3A and FCGR3B haplotypes with rheumatoid arthritis and primary Sjögren's syndrome [POSTER PRESENTATION]
Background
Rheumatoid arthritis (RA) is an autoimmune disease that is thought to arise from a complex interaction between multiple genetic factors and environmental triggers. We have previously demonstrated an association between a Fc gamma receptor (FcγR) haplotype and RA in a cross-sectional cohort of RA patients. We have sought to confirm this association in an inception cohort of RA patients and matched controls. We also extended our study to investigate a second autoanti-body associated rheumatic disease, primary Sjögren's syndrome (PSS).
Methods
The FCGR3A-158F/V and FCGR3B-NA1/NA2 functional polymorphisms were examined for association in an inception cohort of RA patients (n = 448), and a well-characterised PSS cohort (n = 83) from the United Kingdom. Pairwise disequilibrium coefficients (D') were calculated in 267 Blood Service healthy controls. The EHPlus program was used to estimate haplotype frequencies for patients and controls and to determine whether significant linkage disequilibrium was present. A likelihood ratio test is performed to test for differences between the haplotype frequencies in cases and controls. A permutation procedure implemented in this program enabled 1000 permutations to be performed on all haplotype associations to assess significance.
Results
There was significant linkage disequilibrium between FCGR3A and FCGR3B (D' = -0.445, P = 0.001). There was no significant difference in the FCGR3A or FCGR3B allele or genotype frequencies in the RA or PSS patients compared with controls. However, there was a significant difference in the FCGR3A-FCGR3B haplotype distributions with increased homozygosity for the FCGR3A-FCGR3B 158V-NA2 haplotype in both our inception RA cohort (odds ratio = 2.15, 95% confidence interval = 1.1–4.2 P = 0.027) and PSS (odds ratio = 2.83, 95% confidence interval = 1.0–8.2, P = 0.047) compared with controls. The reference group for these analyses comprised individuals who did not possess a copy of the FCGR3A-FCGR3B 158V-NA2 haplotype.
Conclusions
We have confirmed our original findings of association between the FCGR3A-FCGR3B 158V-NA2 haplotype and RA in a new inception cohort of RA patients. This suggests that there may be an RA-susceptibility gene at this locus. The significant increased frequency of an identical haplotype in PSS suggests the FcγR genetic locus may contribute to the pathogenesis of diverse autoantibody-mediated rheumatic diseases
Structure of the X-ray Emission from the Jet of 3C 273
We present images from five observations of the quasar 3C 273 with the
Chandra X-ray Observatory. The jet has at least four distinct features which
are not resolved in previous observations. The first knot in the jet (A1) is
very bright in X-rays. Its X-ray spectrum is well fitted with a power law with
alpha = 0.60 +/- 0.05. Combining this measurement with lower frequency data
shows that a pure synchrotron model can fit the spectrum of this knot from
1.647 GHz to 5 keV (over nine decades in energy) with alpha = 0.76 +/- 0.02,
similar to the X-ray spectral slope. Thus, we place a lower limit on the total
power radiated by this knot of 1.5e43 erg/s; substantially more power may be
emitted in the hard X-ray and gamma-ray bands.
Knot A2 is also detected and is somewhat blended with knot B1. Synchrotron
emission may also explain the X-ray emission but a spectral bend is required
near the optical band. For knots A1 and B1, the X-ray flux dominates the
emitted energy. For the remaining optical knots (C through H), localized X-ray
enhancements that might correspond to the optical features are not clearly
resolved. The position angle of the jet ridge line follows the optical shape
with distinct, aperiodic excursions of +/-1 deg from a median value of
-138.0deg. Finally, we find X-ray emission from the ``inner jet'' between 5 and
10" from the core.Comment: 10 pages, 5 figures; accepted for publication in the Astrophysical
Journal Letters. For the color image, see fig1.ps or
http://space.mit.edu/~hermanm/papers/3c273/fig1.jp
Phase separation transition in liquids and polymers induced by electric field gradients
Spatially uniform electric fields have been used to induce instabilities in
liquids and polymers, and to orient and deform ordered phases of
block-copolymers. Here we discuss the demixing phase transition occurring in
liquid mixtures when they are subject to spatially nonuniform fields. Above the
critical value of potential, a phase-separation transition occurs, and two
coexisting phases appear separated by a sharp interface. Analytical and
numerical composition profiles are given, and the interface location as a
function of charge or voltage is found. The possible influence of demixing on
the stability of suspensions and on inter-colloid interaction is discussed.Comment: 7 pages, 3 figures. Special issue of the J. Phys. Soc. Ja
Myelinating Schwann cells ensheath multiple axons in the absence of E3 ligase component Fbxw7
In the central nervous system (CNS), oligodendrocytes myelinate multiple axons; in the peripheral nervous system (PNS), Schwann cells (SCs) myelinate a single axon. Why are the myelinating potentials of these glia so fundamentally different? Here, we find that loss of Fbxw7, an E3 ubiquitin ligase component, enhances the myelinating potential of SCs. Fbxw7 mutant SCs make thicker myelin sheaths and sometimes appear to myelinate multiple axons in a fashion reminiscent of oligodendrocytes. Several Fbxw7 mutant phenotypes are due to dysregulation of mTOR; however, the remarkable ability of mutant SCs to ensheathe multiple axons is independent of mTOR signaling. This indicates distinct roles for Fbxw7 in SC biology including modes of axon interactions previously thought to fundamentally distinguish myelinating SCs from oligodendrocytes. Our data reveal unexpected plasticity in the myelinating potential of SCs, which may have important implications for our understanding of both PNS and CNS myelination and myelin repair
- …