2,186 research outputs found

    Searching for galactic cosmic ray pevatrons with multi-TeV gamma rays and neutrinos

    Full text link
    The recent HESS detections of supernova remnant shells in TeV gamma-rays confirm the theoretical predictions that supernova remnants can operate as powerful cosmic ray accelerators. If these objects are responsible for the bulk of galactic cosmic rays, then they should accelerate protons and nuclei to 10^15 eV and beyond, i.e. act as cosmic PeVatrons. The model of diffusive shock acceleration allows, under certain conditions, acceleration of particles to such high energies and their gradual injection into the interstellar medium, mainly during the Sedov phase of the remnant evolution. The most energetic particles are released first, while particles of lower energies are more effectively confined in the shell, and are released at later epochs. Thus the spectrum of nonthermal paticles inside the shell extends to PeV energies only during a relatively short period of the evolution of the remnant. For this reason one may expect spectra of secondary gamma-rays and neutrinos extending to energies beyond 10 TeV only from T \lesssim 1000 yr old supernova remnants. On the other hand, if by a chance a massive gas cloud appears in the \lesssim 100 pc vicinity of the supernova remnant, ``delayed'' multi-TeV signals of gamma-rays and neutrinos arise when the most energetic partices emerged from the supernova shell reach the cloud. The detection of such delayed emission of multi-TeV gamma-rays and neutrinos allows indirect identification of the supernova remnant as a particle PeVatron.Comment: ApJ Letters, in press. Reference to recent MILAGRO results adde

    Probing Nearby CR Accelerators and ISM Turbulence with Milagro Hot Spots

    Full text link
    Both the acceleration of cosmic rays (CR) in supernova remnant shocks and their subsequent propagation through the random magnetic field of the Galaxy deem to result in an almost isotropic CR spectrum. Yet the MILAGRO TeV observatory discovered a sharp (10)\sim10^{\circ}) arrival anisotropy of CR nuclei. We suggest a mechanism for producing a weak and narrow CR beam which operates en route to the observer. The key assumption is that CRs are scattered by a strongly anisotropic Alfven wave spectrum formed by the turbulent cascade across the local field direction. The strongest pitch-angle scattering occurs for particles moving almost precisely along the field line. Partly because this direction is also the direction of minimum of the large scale CR angular distribution, the enhanced scattering results in a weak but narrow particle excess. The width, the fractional excess and the maximum momentum of the beam are calculated from a systematic transport theory depending on a single scale ll which can be associated with the longest Alfven wave, efficiently scattering the beam. The best match to all the three characteristics of the beam is achieved at l1l\sim1pc. The distance to a possible source of the beam is estimated to be within a few 100pc. Possible approaches to determination of the scale ll from the characteristics of the source are discussed. Alternative scenarios of drawing the beam from the galactic CR background are considered. The beam related large scale anisotropic CR component is found to be energy independent which is also consistent with the observations.Comment: 2 figures, ApJ accepted version2 minor changes and correction

    Kinetic approaches to particle acceleration at cosmic ray modified shocks

    Full text link
    Kinetic approaches provide an effective description of the process of particle acceleration at shock fronts and allow to take into account the dynamical reaction of the accelerated particles as well as the amplification of the turbulent magnetic field as due to streaming instability. The latter does in turn affect the maximum achievable momentum and thereby the acceleration process itself, in a chain of causality which is typical of non-linear systems. Here we provide a technical description of two of these kinetic approaches and show that they basically lead to the same conclusions. In particular we discuss the effects of shock modification on the spectral shape of the accelerated particles, on the maximum momentum, on the thermodynamic properties of the background fluid and on the escaping and advected fluxes of accelerated particles.Comment: 22 pages, 7 figures, accepted for publication in MNRA

    A relativistic partially electromagnetic planar plasma shock

    Get PDF
    We model relativistically colliding plasma by PIC simulations in one and two spatial dimensions, taking an ion-to-electron mass ratio of 400. Energy dissipation by a wave precursor of mixed polarity and different densities of the colliding plasma slabs results in a relativistic forward shock forming on millisecond timescales. The forward shock accelerates electrons to ultrarelativistic energies and reflects upstream ions, which drag the electrons along to preserve the plasma quasi-neutrality. No reverse shock forms. The shock may be representative for internal gamma ray burst shocks

    Turbulent magnetic field amplification driven by cosmic-ray pressure gradients

    Full text link
    Observations of non-thermal emission from several supernova remnants suggest that magnetic fields close to the blastwave are much stronger than would be naively expected from simple shock compression of the field permeating the interstellar medium (ISM). We present a simple model which is capable of achieving sufficient magnetic field amplification to explain the observations. We propose that the cosmic-ray pressure gradient acting on the inhomogeneous ISM upstream of the supernova blastwave induces strong turbulence upstream of the supernova blastwave. The turbulence is generated through the differential acceleration of the upstream ISM which occurs as a result of density inhomogeneities in the ISM. This turbulence then amplifies the pre-existing magnetic field. Numerical simulations are presented which demonstrate that amplification factors of 20 or more are easily achievable by this mechanism when reasonable parameters for the ISM and supernova blastwave are assumed. The length scale over which this amplification occurs is that of the diffusion length of the highest energy non-thermal particles.Comment: 13 pages, 4 figures, 1 Table. Accepted for publication in MNRAS, modified following referee comments and references adde

    In which shell-type SNRs should we look for gamma-rays and neutrinos from p-p collisions?

    Full text link
    We present a simple analytic model for the various contributions to the non-thermal emission from shell type SNRs, and show that this model's results reproduce well the results of previous detailed calculations. We show that the \geq 1 TeV gamma ray emission from the shell type SNRs RX J1713.7-3946 and RX J0852.0-4622 is dominated by inverse-Compton scattering of CMB photons (and possibly infra-red ambient photons) by accelerated electrons. Pion decay (due to proton-proton collisions) is shown to account for only a small fraction, \lesssim10^-2, of the observed flux, as assuming a larger fractional contribution would imply nonthermal radio and X-ray synchrotron emission and thermal X-ray Bremsstrahlung emission that far exceed the observed radio and X-ray fluxes. Models where pion decay dominates the \geq 1 TeV flux avoid the implied excessive synchrotron emission (but not the implied excessive thermal X-ray Bremsstrahlung emission) by assuming an extremely low efficiency of electron acceleration, K_ep \lesssim 10^-4 (K_ep is the ratio of the number of accelerated electrons and the number of accelerated protons at a given energy). We argue that observations of SNRs in nearby galaxies imply a lower limit of K_ep \gtrsim 10^-3, and thus rule out K_ep values \lesssim 10^-4 (assuming that SNRs share a common typical value of K_ep). It is suggested that SNRs with strong thermal X-ray emission, rather than strong non-thermal X-ray emission, are more suitable candidates for searches of gamma rays and neutrinos resulting from proton-proton collisions. In particular, it is shown that the neutrino flux from the SNRs above is probably too low to be detected by current and planned neutrino observatories (Abridged).Comment: 13 pages, 1 figure, accepted for publication in JCAP, minor revision

    A current driven instability in parallel, relativistic shocks

    Full text link
    Recently, Bell has reanalysed the problem of wave excitation by cosmic rays propagating in the pre-cursor region of a supernova remnant shock front. He pointed out a strong, non-resonant, current-driven instability that had been overlooked in the kinetic treatments, and suggested that it is responsible for substantial amplification of the ambient magnetic field. Magnetic field amplification is also an important issue in the problem of the formation and structure of relativistic shock fronts, particularly in relation to models of gamma-ray bursts. We have therefore generalised the linear analysis to apply to this case, assuming a relativistic background plasma and a monoenergetic, unidirectional incoming proton beam. We find essentially the same non-resonant instability noticed by Bell, and show that also under GRB conditions, it grows much faster than the resonant waves. We quantify the extent to which thermal effects in the background plasma limit the maximum growth rate.Comment: 8 pages, 1 figur

    High Energy Cosmic Rays from Local GRBs

    Full text link
    We have developed a model that explains cosmic rays with energies E between \~0.3 PeV and the energy of the second knee at E_2 ~ 3*10^{17} eV as originating from a recent Galactic gamma-ray burst (GRB) that occurred ~1 Myr ago within 1 kpc from Earth. Relativistic shocks from GRBs are assumed to inject power-law distributions of cosmic rays (CRs) to the highest energies. Diffusive propagation of CRs from the local GRB explains the CR spectrum near and above the first knee at E_1 ~ 3*10^{15} eV. The first and the second knees are explained as being directly connected with the injection of plasma turbulence in the interstellar medium on a ~1 pc and ~100 pc scales, respectively. Transition to CRs from extragalactic GRBs occurs at E > E_2. The origin of the ankle in the CR spectrum at E ~ 4*10^{18} eV is due to photopair energy losses of UHECRs on cosmological timescales, as also suggested by Berezinsky and collaborators. Any significant excess flux of extremely high energy CRs deviating from the exponential cutoff behavior at E> E_{GZK} = 6*10^{19} eV would imply a significant contribution due to recent GRB activity on timescales t < 10^8 yrs from local extragalactic sources within ~10 Mpc.Comment: 10 pages, 5 figures; to appear in the Proceedings of the Aspen2005 Workshop ``Physics at the End of the Galactic Cosmic Ray Spectrum'' (Aspen, April 2005
    corecore