40 research outputs found
Porcine Sialoadhesin (CD169/Siglec-1) Is an Endocytic Receptor that Allows Targeted Delivery of Toxins and Antigens to Macrophages
Sialoadhesin is exclusively expressed on specific subpopulations of macrophages. Since sialoadhesin-positive macrophages are involved in inflammatory autoimmune diseases, such as multiple sclerosis, and potentially in the generation of immune responses, targeted delivery of drugs, toxins or antigens via sialoadhesin-specific immunoconjugates may prove a useful therapeutic strategy. Originally, sialoadhesin was characterized as a lymphocyte adhesion molecule, though recently its involvement in internalization of sialic acid carrying pathogens was shown, suggesting that sialoadhesin is an endocytic receptor. In this report, we show that porcine sialoadhesin-specific antibodies and F(ab')2 fragments trigger sialoadhesin internalization, both in primary porcine macrophages and in cells expressing recombinant porcine sialoadhesin. Using chemical inhibitors, double immunofluorescence stainings and dominant-negative constructs, porcine sialoadhesin internalization was shown to be clathrin- and Eps15-dependent and to result in targeting to early endosomes but not lysosomes. Besides characterizing the sialoadhesin endocytosis mechanism, two sialoadhesin-specific immunoconjugates were evaluated. We observed that porcine sialoadhesin-specific immunotoxins efficiently kill sialoadhesin-expressing macrophages. Furthermore, porcine sialoadhesin-specific albumin immunoconjugates were shown to be internalized in macrophages and immunization with these immunoconjugates resulted in a rapid and robust induction of albumin-specific antibodies, this compared to immunization with albumin alone. Together, these data expand sialoadhesin functionality and show that it can function as an endocytic receptor, a feature that cannot only be misused by sialic acid carrying pathogens, but that may also be used for specific targeting of toxins or antigens to sialoadhesin-expressing macrophages
The M/GP5 Glycoprotein Complex of Porcine Reproductive and Respiratory Syndrome Virus Binds the Sialoadhesin Receptor in a Sialic Acid-Dependent Manner
The porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to swine health worldwide and is considered the most significant viral disease in the swine industry today. In past years, studies on the entry of the virus into its host cell have led to the identification of a number of essential virus receptors and entry mediators. However, viral counterparts for these molecules have remained elusive and this has made rational development of new generation vaccines impossible. The main objective of this study was to identify the viral counterparts for sialoadhesin, a crucial PRRSV receptor on macrophages. For this purpose, a soluble form of sialoadhesin was constructed and validated. The soluble sialoadhesin could bind PRRSV in a sialic acid-dependent manner and could neutralize PRRSV infection of macrophages, thereby confirming the role of sialoadhesin as an essential PRRSV receptor on macrophages. Although sialic acids are present on the GP3, GP4 and GP5 envelope glycoproteins, only the M/GP5 glycoprotein complex of PRRSV was identified as a ligand for sialoadhesin. The interaction was found to be dependent on the sialic acid binding capacity of sialoadhesin and on the presence of sialic acids on GP5. These findings not only contribute to a better understanding of PRRSV biology, but the knowledge and tools generated in this study also hold the key to the development of a new generation of PRRSV vaccines
Attenuation of porcine reproductive and respiratory syndrome virus by molecular breeding of virus envelope genes from genetically divergent strains
Molecular breeding via DNA shuffling can direct the evolution of viruses with desired traits. By using a positive-strand RNA virus, porcine reproductive and respiratory syndrome virus (PRRSV), as a model, rapid attenuation of the virus was achieved in this study by DNA shuffling of the viral envelope genes from multiple strains. The GP5 envelope genes of 7 genetically divergent PRRSV strains and the GP5-M genes of 6 different PRRSV strains were molecularly bred by DNA shuffling and iteration of the process, and the shuffled genes were cloned into the backbone of a DNA-launched PRRSV infectious clone. Two representative chimeric viruses, DS722 with shuffled GP5 genes and DS5M3 with shuffled GP5-M genes, were rescued and shown to replicate at a lower level and to form smaller plaques in vitro than their parental virus. An in vivo pathogenicity study revealed that pigs infected with the two chimeric viruses had significant reductions in viral-RNA loads in sera and lungs and in gross and microscopic lung lesions, indicating attenuation of the chimeric viruses. Furthermore, pigs vaccinated with the chimeric virus DS722, but not pigs vaccinated with DS5M3, still acquired protection against PRRSV challenge at a level similar to that of the parental virus. Therefore, this study reveals a unique approach through DNA shuffling of viral envelope genes to attenuate a positive-strand RNA virus. The results have important implications for future vaccine development and will generate broad general interest in the scientific community in rapidly attenuating other important human and veterinary viruses
Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function
Porcine Reproductive and Respiratory Syndrome (PRRS) is a panzootic infectious disease of pigs, causing major economic losses to the world-wide pig industry. PRRS manifests differently in pigs of all ages but primarily causes late-term abortions and stillbirths in sows and respiratory disease in piglets. The causative agent of the disease is the positive-strand RNA PRRS virus (PRRSV). PRRSV has a narrow host cell tropism, limited to cells of the monocyte/macrophage lineage. CD163 has been described as a fusion receptor for PRRSV, whereby the scavenger receptor cysteine-rich domain 5 (SRCR5) region was shown to be an interaction site for the virus in vitro. CD163 is expressed at high levels on the surface of macrophages, particularly in the respiratory system. Here we describe the application of CRISPR/Cas9 to pig zygotes, resulting in the generation of pigs with a deletion of Exon 7 of the CD163 gene, encoding SRCR5. Deletion of SRCR5 showed no adverse effects in pigs maintained under standard husbandry conditions with normal growth rates and complete blood counts observed. Pulmonary alveolar macrophages (PAMs) and peripheral blood monocytes (PBMCs) were isolated from the animals and assessed in vitro. Both PAMs and macrophages obtained from PBMCs by CSF1 stimulation (PMMs) show the characteristic differentiation and cell surface marker expression of macrophages of the respective origin. Expression and correct folding of the SRCR5 deletion CD163 on the surface of macrophages and biological activity of the protein as hemoglobin-haptoglobin scavenger was confirmed. Challenge of both PAMs and PMMs with PRRSV genotype 1, subtypes 1, 2, and 3 and PMMs with PRRSV genotype 2 showed complete resistance to viral infections assessed by replication. Confocal microscopy revealed the absence of replication structures in the SRCR5 CD163 deletion macrophages, indicating an inhibition of infection prior to gene expression, i.e. at entry/fusion or unpacking stages
Understanding PRRSV Infection in Porcine Lung Based on Genome-Wide Transcriptome Response Identified by Deep Sequencing
Porcine reproductive and respiratory syndrome (PRRS) has been one of the most economically important diseases affecting swine industry worldwide and causes great economic losses each year. PRRS virus (PRRSV) replicates mainly in porcine alveolar macrophages (PAMs) and dendritic cells (DCs) and develops persistent infections, antibody-dependent enhancement (ADE), interstitial pneumonia and immunosuppression. But the molecular mechanisms of PRRSV infection still are poorly understood. Here we report on the first genome-wide host transcriptional responses to classical North American type PRRSV (N-PRRSV) strain CH 1a infection using Solexa/Illumina's digital gene expression (DGE) system, a tag-based high-throughput transcriptome sequencing method, and analyse systematically the relationship between pulmonary gene expression profiles after N-PRRSV infection and infection pathology. Our results suggest that N-PRRSV appeared to utilize multiple strategies for its replication and spread in infected pigs, including subverting host innate immune response, inducing an anti-apoptotic and anti-inflammatory state as well as developing ADE. Upregulation expression of virus-induced pro-inflammatory cytokines, chemokines, adhesion molecules and inflammatory enzymes and inflammatory cells, antibodies, complement activation were likely to result in the development of inflammatory responses during N-PRRSV infection processes. N-PRRSV-induced immunosuppression might be mediated by apoptosis of infected cells, which caused depletion of immune cells and induced an anti-inflammatory cytokine response in which they were unable to eradicate the primary infection. Our systems analysis will benefit for better understanding the molecular pathogenesis of N-PRRSV infection, developing novel antiviral therapies and identifying genetic components for swine resistance/susceptibility to PRRS
Increased yield of porcine circovirus-2 by a combined treatment of PK-15 cells with interferon-gamma and inhibitors of endosomallysosomal system acidification
Archives virology 2008, Vol. 153: 337–342Treatment of porcine kidney (PK-15) cells with
either interferon-gamma (IFN-g) or endosomallysosomal
system acidification inhibitors increases
replication of porcine circovirus type 2 (PCV2). In
the present study, the effect of a combination of
these treatments on the number of infected cells
and virus yield was tested. The number of PCV2
(Stoon-1010)-infected PK-15 cells increased in
cells treated with ammonium chloride (445 39%
increase), IFN-g (446 8%), ammonium chlorideþ
IFN-g (1721 283%), chloroquine diphosphate
(1037 121%), chloroquine diphosphateþIFN-g
(2199 255%), monensin (950 178%) and
monensinþIFN-g (1948 60%). Combined IFNg
and endosomal-lysosomal system acidification
inhibitors increased PCV2 yield by up to 50 times
compared to untreated PK-15. This augmented virus
replication in PK-15 cells may be helpful in the
production of PCV2 vaccines
Involvement of the Matrix Protein in Attachment of Porcine Reproductive and Respiratory Syndrome Virus to a Heparinlike Receptor on Porcine Alveolar Macrophages
The porcine reproductive and respiratory syndrome virus (PRRSV) has a very restricted tropism for well-differentiated cells of the monocyte-macrophage lineage, which is probably determined by specific receptors on these cells. In this study, the importance of heparinlike molecules on porcine alveolar macrophages (PAM) for PRRSV infection was determined. Heparin interacted with the virus and reduced infection of PAM up to 92 or 88% for the American and European types of PRRSV, respectively. Other glycosaminoglycans, similar to heparin, had no significant effect on infection while heparinase treatment of PAM resulted in a significant reduction of the infection. Analysis of infection kinetics showed that PRRSV attachment to heparan sulfate occurs early in infection. A heparin-sensitive binding step was observed which converted completely into a heparin-resistant binding after 120 min at 4°C. Using heparin-affinity chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), it was observed that the structural matrix (M) and nucleocapsid (N) proteins attached to heparin. Nonreducing SDS-PAGE revealed that M bound to heparin mainly as a complex with glycoprotein GP(5) and that the N protein bound to heparin as a homodimer. GP(3), which was identified as a minor structural protein of European types of PRRSV, did not bind to heparin. Since the N protein is not exposed on the virion surface, it was concluded that the structural M protein and the M-GP(5) complex contribute to PRRSV attachment on a heparinlike receptor on PAM. This is the first report that identifies a PRRSV ligand for a cell surface heparinlike receptor on PAM
Evidence of a drug-specific impact of experimentally selected paromomycin and miltefosine resistance on parasite fitness in Leishmania infantum
International audienceOBJECTIVES:Although miltefosine and paromomycin were only recently introduced to treat visceral leishmaniasis, increasing numbers of miltefosine treatment failures and occasional primary resistance to both drugs have been reported. Understanding alterations in parasite behaviour linked to drug resistance is essential to assess the propensity for emergence and spread of resistant strains, particularly since a positive effect on fitness has been reported for antimony-resistant parasites. This laboratory study compared the fitness of a drug-susceptible parent WT clinical Leishmania infantum isolate (MHOM/FR/96/LEM3323) and derived miltefosine and paromomycin drug-resistant lines that were experimentally selected at the intracellular amastigote level.METHODS:Parasite fitness of WT, paromomycin-resistant and miltefosine-resistant strains, in vitro and in vivo parasite growth, metacyclogenesis, infectivity and macrophage stress responses were comparatively evaluated.RESULTS:No significant differences in promastigote fitness were noted between the WT and paromomycin-resistant strain, while clear benefits could be demonstrated for paromomycin-resistant amastigotes in terms of enhanced in vitro and in vivo growth potential and intracellular stress response. The miltefosine-resistant phenotype showed incomplete promastigote metacyclogenesis, decreased intracellular growth and weakened stress response, revealing a reduced fitness compared with WT parent parasites.CONCLUSIONS:The rapid selection and fitness advantages of paromomycin-resistant amastigotes endorse the current use of paromomycin in combination therapy. Although a reduced fitness of miltefosine-resistant strains may explain the difficulty of miltefosine resistance selection in vitro, the growing number of miltefosine treatment failures in the field still requires further exploratory research