48 research outputs found

    Imbalances in serum angiopoietin concentrations are early predictors of septic shock development in patients with post chemotherapy febrile neutropenia

    Get PDF
    Background: Febrile neutropenia carries a high risk of sepsis complications, and the identification of biomarkers capable to identify high risk patients is a great challenge. Angiopoietins (Ang -) are cytokines involved in the control microvascular permeability. It is accepted that Ang-1 expression maintains endothelial barrier integrity, and that Ang-2 acts as an antagonizing cytokine with barrier-disrupting functions in inflammatory situations. Ang-2 levels have been recently correlated with sepsis mortality in intensive care units. Methods: We prospectively evaluated concentrations of Ang-1 and Ang-2 at different time-points during febrile neutropenia, and explored the diagnostic accuracy of these mediators as potential predictors of poor outcome in this clinical setting before the development of sepsis complications. Results: Patients that evolved with septic shock (n = 10) presented higher levels of Ang-2 measured 48 hours after fever onset, and of the Ang-2/Ang-1 ratio at the time of fever onset compared to patients with non-complicated sepsis (n = 31). These levels correlated with sepsis severity scores. Conclusions: Our data suggest that imbalances in the concentrations of Ang-1 and Ang-2 are independent and early markers of the risk of developing septic shock and of sepsis mortality in febrile neutropenia, and larger studies are warranted to validate their clinical usefulness. Therapeutic strategies that manipulate this Ang-2/Ang-1 imbalance can potentially offer new and promising treatments for sepsis in febrile neutropenia

    Angiopoietin-1 is associated with cerebral vasospasm and delayed cerebral ischemia in subarachnoid hemorrhage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiopoietin-1 (Ang-1) and -2 (Ang-2) are keyplayers in the regulation of endothelial homeostasis and vascular proliferation. Angiopoietins may play an important role in the pathophysiology of cerebral vasospasm (CVS). Ang-1 and Ang-2 have not been investigated in this regard so far.</p> <p>Methods</p> <p>20 patients with subarachnoid hemorrhage (SAH) and 20 healthy controls (HC) were included in this prospective study. Blood samples were collected from days 1 to 7 and every other day thereafter. Ang-1 and Ang-2 were measured in serum samples using commercially available enzyme-linked immunosorbent assay. Transcranial Doppler sonography was performed to monitor the occurrence of cerebral vasospasm.</p> <p>Results</p> <p>SAH patients showed a significant drop of Ang-1 levels on day 2 and 3 post SAH compared to baseline and HC. Patients, who developed Doppler sonographic CVS, showed significantly lower levels of Ang-1 with a sustained decrease in contrast to patients without Doppler sonographic CVS, whose Ang-1 levels recovered in the later course of the disease. In patients developing cerebral ischemia attributable to vasospasm significantly lower Ang-1 levels have already been observed on the day of admission. Differences of Ang-2 between SAH patients and HC or patients with and without Doppler sonographic CVS were not statistically significant.</p> <p>Conclusions</p> <p>Ang-1, but not Ang-2, is significantly altered in patients suffering from SAH and especially in those experiencing CVS and cerebral ischemia. The loss of vascular integrity, regulated by Ang-1, might be in part responsible for the development of cerebral vasospasm and subsequent cerebral ischemia.</p

    Expression and Functional Roles of Angiopoietin-2 in Skeletal Muscles

    Get PDF
    Angiopoietin-1 (ANGPT1) and angiopoietin-2 (ANGPT2) are angiogenesis factors that modulate endothelial cell differentiation, survival and stability. Recent studies have suggested that skeletal muscle precursor cells constitutively express ANGPT1 and adhere to recombinant ANGPT1 and ANGPT2 proteins. It remains unclear whether or not they also express ANGPT2, or if ANGPT2 regulates the myogenesis program of muscle precursors. In this study, ANGPT2 regulatory factors and the effects of ANGPT2 on proliferation, migration, differentiation and survival were identified in cultured primary skeletal myoblasts. The cellular networks involved in the actions of ANGPT2 on skeletal muscle cells were also analyzed.Primary skeletal myoblasts were isolated from human and mouse muscles. Skeletal myoblast survival, proliferation, migration and differentiation were measured in-vitro in response to recombinant ANGPT2 protein and to enhanced ANGPT2 expression delivered with adenoviruses. Real-time PCR and ELISA measurements revealed the presence of constitutive ANGPT2 expression in these cells. This expression increased significantly during myoblast differentiation into myotubes. In human myoblasts, ANGPT2 expression was induced by H(2)O(2), but not by TNFα, IL1β or IL6. ANGPT2 significantly enhanced myoblast differentiation and survival, but had no influence on proliferation or migration. ANGPT2-induced survival was mediated through activation of the ERK1/2 and PI-3 kinase/AKT pathways. Microarray analysis revealed that ANGPT2 upregulates genes involved in the regulation of cell survival, protein synthesis, glucose uptake and free fatty oxidation.Skeletal muscle precursors constitutively express ANGPT2 and this expression is upregulated during differentiation into myotubes. Reactive oxygen species exert a strong stimulatory influence on muscle ANGPT2 expression while pro-inflammatory cytokines do not. ANGPT2 promotes skeletal myoblast survival and differentiation. These results suggest that muscle-derived ANGPT2 production may play a positive role in skeletal muscle fiber repair

    Megalin/LRP2 Expression Is Induced by Peroxisome Proliferator-Activated Receptor -Alpha and -Gamma: Implications for PPARs' Roles in Renal Function

    Get PDF
    BACKGROUND: Megalin is a large endocytic receptor with relevant functions during development and adult life. It is expressed at the apical surface of several epithelial cell types, including proximal tubule cells (PTCs) in the kidney, where it internalizes apolipoproteins, vitamins and hormones with their corresponding carrier proteins and signaling molecules. Despite the important physiological roles of megalin little is known about the regulation of its expression. By analyzing the human megalin promoter, we found three response elements for the peroxisomal proliferator-activated receptor (PPAR). The objective of this study was to test whether megalin expression is regulated by the PPARs. METHODOLOGY/PRINCIPAL FINDINGS: Treatment of epithelial cell lines with PPARα or PPARγ ligands increased megalin mRNA and protein expression. The stimulation of megalin mRNA expression was blocked by the addition of specific PPARα or PPARγ antagonists. Furthermore, PPAR bound to three PPAR response elements located in the megalin promoter, as shown by EMSA, and PPARα and its agonist activated a luciferase construct containing a portion of the megalin promoter and the first response element. Accordingly, the activation of PPARα and PPARγ enhanced megalin expression in mouse kidney. As previously observed, high concentrations of bovine serum albumin (BSA) decreased megalin in PTCs in vitro; however, PTCs pretreated with PPARα and PPARγ agonists avoided this BSA-mediated reduction of megalin expression. Finally, we found that megalin expression was significantly inhibited in the PTCs of rats that were injected with BSA to induce tubulointerstitial damage and proteinuria. Treatment of these rats with PPARγ agonists counteracted the reduction in megalin expression and the proteinuria induced by BSA. CONCLUSIONS: PPARα/γ and their agonists positively control megalin expression. This regulation could have an important impact on several megalin-mediated physiological processes and on pathophysiologies such as chronic kidney disease associated with diabetes and hypertension, in which megalin expression is impaired

    Year in review in Intensive Care Medicine 2010: I. Acute renal failure, outcome, risk assessment and ICU performance, sepsis, neuro intensive care and experimentals

    Get PDF
    SCOPUS: re.jinfo:eu-repo/semantics/publishe

    A randomized controlled trial evaluating the impact of knowledge translation and exchange strategies

    Get PDF

    What is damaging the kidney in lupus nephritis?

    Get PDF
    Despite marked improvements in the survival of patients with severe lupus nephritis over the past 50 years, the rate of complete clinical remission after immune suppression therapy i

    Microvascular dysfunction in COVID-19: the MYSTIC study

    No full text
    Rationale Pre-clinical and autopsy studies have fueled the hypothesis that a dysregulated vascular endothelium might play a central role in the pathogenesis of ARDS and multi-organ failure in COVID-19. Objectives To comprehensively characterize and quantify microvascular alterations in patients with COVID-19. Methods Hospitalized adult patients with moderate-to-severe or critical COVID-19 (n = 23) were enrolled non-consecutively in this prospective, observational, cross-sectional, multi-center study. Fifteen healthy volunteers served as controls. All participants underwent intravital microscopy by sidestream dark field imaging to quantify vascular density, red blood cell velocity (V-RBC), and glycocalyx dimensions (perfused boundary region, PBR) in sublingual microvessels. Circulating levels of endothelial and glycocalyx-associated markers were measured by multiplex proximity extension assay and enzyme-linked immunosorbent assay. Measurements and main results COVID-19 patients showed an up to 90% reduction in vascular density, almost exclusively limited to small capillaries (diameter 4-6 mu m), and also significant reductions ofV(RBC). Especially, patients on mechanical ventilation showed severe glycocalyx damage as indicated by higher PBR values (i.e., thinner glycocalyx) and increased blood levels of shed glycocalyx constituents. Several markers of endothelial dysfunction were increased and correlated with disease severity in COVID-19. PBR (AUC 0.75,p = 0.01), ADAMTS13 (von Willebrand factor-cleaving protease; AUC 0.74,p = 0.02), and vascular endothelial growth factor A (VEGF-A; AUC 0.73,p = 0.04) showed the best discriminatory ability to predict 60-day in-hospital mortality. Conclusions Our data clearly show severe alterations of the microcirculation and the endothelial glycocalyx in patients with COVID-19. Future therapeutic approaches should consider the importance of systemic vascular involvement in COVID-19

    The role of laser Doppler flowmetry tests, serum angiopoietin-2, asymmetric and symmetric dimethylarginine to predict outcome in chronic kidney disease

    Get PDF
    OBJECTIVE: The role of biochemical and functional markers of microvascular dysfunction to predict cardiovascular outcomes in nondialyzed chronic kidney disease (CKD) remains unclear. In this prospective cohort study, we assessed whether biochemical [serum level of angiopoietin-2 (Ang-2), asymmetric and symmetric dimethylarginin] and functional (laser Doppler flowmetry) measures of microvascular function predicted cardiovascular events, cardiovascular and all-cause mortality in CKD patients. METHODS: Postocclusive reactive hyperemia area (PORHHA), acetylcholine and sodium nitroprusside-mediated flow changes were estimated by laser Doppler flowmetry, and Ang-2, asymmetric and symmetric dimethylarginin were assessed in 105 CKD patients at baseline. Multiple failure time Cox-regression analyses with backward elimination were performed to determine the predictors of the combined endpoint of cardiovascular mortality and cardiovascular events or all-cause mortality and cardiovascular events during a median of 66.6 (interquartile range 39.8-80.4) months of follow-up. RESULTS: In univariate models lnAng-2 and lnPORHHA both predicted the cardiovascular outcome besides age, diabetes, baseline cardiovascular disease, brachial pulse pressure and log C-reactive protein. In multivariate analysis lnPORHHA [hazard ratio: 0.66 (95% confidence interval: 0.49-0.89) per ln(mU s)], age [1.03 (1.01-1.06) per year], log C-reactive protein [1.31 (1.06-1.64) per ln(mg/l)] and diabetes [3.33 (1.70-6.53)] remained significant predictors of the cardiovascular outcome, whereas lnAng-2 did not enter the model. Neither of the microvascular variables were an independent predictor of all-cause mortality and cardiovascular events. CONCLUSION: Among the functional and biochemical microvascular parameters PORHHA seems to improve cardiovascular risk assessment in CKD. Nevertheless the robustness of traditional risk factors seems to outweigh the role of microvascular biomarkers on all-cause mortality and cardiovascular events at this time
    corecore