366 research outputs found

    Cygnus X-2: the Descendant of an Intermediate-Mass X-Ray Binary

    Full text link
    The X-ray binary Cygnus X-2 (Cyg X-2) has recently been shown to contain a secondary that is much more luminous and hotter than is appropriate for a low-mass subgiant. We present detailed binary-evolution calculations which demonstrate that the present evolutionary state of Cyg X-2 can be understood if the secondary had an initial mass of around 3.5 M_sun and started to transfer mass near the end of its main-sequence phase (or, somewhat less likely, just after leaving the main sequence). Most of the mass of the secondary must have been ejected from the system during an earlier rapid mass-transfer phase. In the present phase, the secondary has a mass of around 0.5 M_sun with a non-degenerate helium core. It is burning hydrogen in a shell, and mass transfer is driven by the advancement of the burning shell. Cyg X-2 therefore is related to a previously little studied class of intermediate-mass X-ray binaries (IMXBs). We suggest that perhaps a significant fraction of X-ray binaries presently classified as low-mass X-ray binaries may be descendants of IMXBs and discuss some of the implications

    Observing Lense-Thirring Precession in Tidal Disruption Flares

    Full text link
    When a star is tidally disrupted by a supermassive black hole (SMBH), the streams of liberated gas form an accretion disk after their return to pericenter. We demonstrate that Lense-Thirring precession in the spacetime around a rotating SMBH can produce significant time evolution of the disk angular momentum vector, due to both the periodic precession of the disk and the nonperiodic, differential precession of the bound debris streams. Jet precession and periodic modulation of disk luminosity are possible consequences. The persistence of the jetted X-ray emission in the Swift J164449.3+573451 flare suggests that the jet axis was aligned with the spin axis of the SMBH during this event.Comment: 4 pages, 4 figures. Accepted for publication in Physical Review Letters. Minor changes made to match proof

    Mass loss out of close binaries

    Full text link
    In a liberal evolutionary scenario, mass can escape from a binary during eras of fast mass transfer. We calculate the mass lost by binaries with a B-type primary at birth where mass transfer starts during hydrogen core burning of the donor. We simulate the distribution of mass-ratios and orbital periods for those interacting binaries. The amount of time the binary shows Algol characteristics within different values of mass-ratio and orbital period has been fixed from conservative and liberal evolutionary calculations. We use these data to simulate the distribution of mass-ratios and orbital periods of Algols with the conservative as well as the liberal model. We compare mass-ratios and orbital periods of Algols obtained by conservative evolution with those obtained by our liberal model. Since binaries with a late B-type primary evolve almost conservatively, the overall distribution of mass-ratios will only yield a few Algols more with high mass-ratios than conservative calculations do. Whereas the simulated distribution of orbital periods of Algols fits the observations well, the simulated distribution of mass-ratios produces always too few systems with large values.Comment: 6 pages, 6 figures, accepted for publication in A&A; accepted versio

    A New Evolutionary Path to Type Ia Supernovae: Helium-Rich Super-Soft X-Ray Source Channel

    Get PDF
    We have found a new evolutionary path to Type Ia supernovae (SNe Ia) which has been overlooked in previous work. In this scenario, a carbon-oxygen white dwarf (C+O WD) is originated, not from an asymptotic giant branch star with a C+O core, but from a red-giant star with a helium core of 0.82.0M\sim 0.8-2.0 M_\odot. The helium star, which is formed after the first common envelope evolution, evolves to form a C+O WD of 0.81.1M\sim 0.8-1.1 M_\odot with transferring a part of the helium envelope onto the secondary main-sequence star. This new evolutionary path, together with the optically thick wind from mass-accreting white dwarf, provides a much wider channel to SNe Ia than previous scenarios. A part of the progenitor systems are identified as the luminous supersoft X-ray sources or the recurrent novae like U Sco, which are characterized by the accretion of helium-rich matter. The white dwarf accretes hydrogen-rich, helium-enhanced matter from a lobe-filling, slightly evolved companion at a critical rate and blows excess matter in the wind. The white dwarf grows in mass to the Chandrasekhar mass limit and explodes as an SN Ia. A theoretical estimate indicates that this channel contributes a considerable part of the inferred rate of SNe Ia in our Galaxy, i.e., the rate is about ten times larger than the previous theoretical estimates for white dwarfs with slightly evolved companions.Comment: 19 pages including 12 figures, to be published in ApJ, 519, No.

    The Dynamic Formation of Prominence Condensations

    Full text link
    We present simulations of a model for the formation of a prominence condensation in a coronal loop. The key idea behind the model is that the spatial localization of loop heating near the chromosphere leads to a catastrophic cooling in the corona (Antiochos & Klimchuk 1991). Using a new adaptive grid code, we simulate the complete growth of a condensation, and find that after approx. 5,000 s it reaches a quasi-steady state. We show that the size and the growth time of the condensation are in good agreement with data, and discuss the implications of the model for coronal heating and SOHO/TRACE observations.Comment: Astrophysical Journal latex file, 20 pages, 7 b-w figures (gif files

    Supernova Hosts for Gamma-Ray Burst Jets: Dynamical Constraints

    Get PDF
    I constrain a possible supernova origin for gamma-ray bursts by modeling the dynamical interaction between a relativistic jet and a stellar envelope surrounding it. The delay in observer's time introduced by the jet traversing the envelope should not be long compared to the duration of gamma-ray emission; also, the jet should not be swallowed by a spherical explosion it powers. The only stellar progenitors that comfortably satisfy these constraints, if one assumes that jets move ballistically within their host stars, are compact carbon-oxygen or helium post-Wolf-Rayet stars (type Ic or Ib supernovae); type II supernovae are ruled out. Notably, very massive stars do not appear capable of producing the observed bursts at any redshift unless the stellar envelope is stripped prior to collapse. The presence of a dense stellar wind places an upper limit on the Lorentz factor of the jet in the internal shock model; however, this constraint may be evaded if the wind is swept forward by a photon precursor. Shock breakout and cocoon blowout are considered individually; neither presents a likely source of precursors for cosmological GRBs. These envelope constraints could conceivably be circumvented if jets are laterally pressure-confined while traversing the outer stellar envelope. If so, jets responsible for observed GRBs must either have been launched from a region several hundred kilometers wide, or have mixed with envelope material as they travel. A phase of pressure confinement and mixing would imprint correlations among jets that may explain observed GRB variability-luminosity and lag-luminosity correlations.Comment: 17 pages, MNRAS, accepted. Contains new analysis of pressure-confined jets, of jets that experience oblique shocks or mix with their cocoons, and of cocoons after breakou

    Magnetohydrostatic solar prominences in near-potential coronal magnetic fields

    Full text link
    We present numerical magnetohydrostatic solutions describing the gravitationally stratified, bulk equilibrium of cool, dense prominence plasma embedded in a near-potential coronal field. These solutions are calculated using the FINESSE magnetohydrodynamics equilibrium solver and describe the morphologies of magnetic field distributions in and around prominences and the cool prominence plasma that these fields support. The equilibrium condition for this class of problem is usually different in distinct subdomains, separated by free boundaries, across which solutions are matched by suitable continuity or jump conditions describing force balance. We employ our precise finite element elliptic solver to calculate solutions not accessible by previous analytical techniques with temperature or entropy prescribed as free functions of the magnetic flux function, including a range of values of the polytropic index, temperature variations mainly across magnetic field lines and photospheric field profiles sheared close to the polarity inversion line. Out of the many examples computed here, perhaps the most noteworthy is one which reproduces precisely the three-part structure often encountered in observations: a cool dense prominence within a cavity/flux rope embedded in a hot corona. The stability properties of these new equilibria, which may be relevant to solar eruptions, can be determined in the form of a full resistive MHD spectrum using a companion hyperbolic stability solver.Comment: To appear in ApJ August 200

    Formation and evolution of a 0.242 Msun helium white dwarf in presence of element diffusion

    Full text link
    A 0.242 Msun object that finally becomes a helium white dwarf is evolved from Roche lobe detachment down to very low luminosities. In doing so, we employ our stellar code to which we have added a set of routines that compute the effects due to gravitational settling, and chemical and thermal diffusion. Initial model is constructed by abstracting mass to a 1 Msun red giant branch model up to the moment at which the model begins to evolve bluewards. We find that element diffusion introduces noticeable changes in the internal structure of the star. In particular, models undergo three thermonuclear flashes instead of one flash as we found with the standard treatment. This fact has a large impact on the total mass fraction of hydrogen left in the star at entering the final cooling track. As a result, at late stages of evolution models with diffusion are characterized by a much smaller nuclear energy release, and they evolve significantly faster compared to those found with the standard treatment. We find that models in which diffusion is considered predict evolutionary ages for the white dwarf companion to the millisecond pulsar PSR B1855+09 in good agreement with the spin-down age of the pulsar.Comment: 6 pages, 3 figures, 12th European Workshop on White Dwarf

    Off-Center Carbon Ignition in Rapidly Rotating, Accreting Carbon-Oxygen White Dwarfs

    Full text link
    We study the effect of stellar rotation on the carbon ignition in a carbon-oxygen white dwarf accreting CO-rich matter. Including the effect of the centrifugal force of rotation, we have calculated evolutionary models up to the carbon ignition for various accretion rates. The rotation velocity at the stellar surface is set to be the Keplerian velocity. The angular velocity in the stellar interior has been determined by taking into account the transport of angular momentum due to turbulent viscosity. We have found that an off-center carbon ignition occurs even when the effect of stellar rotation is included if the accretion rate is sufficiently high; the critical accretion rate for the off-center ignition is hardly changed by the effect of rotation. Rotation, however, delays the ignition;i.e., the mass coordinate of the ignition layer and the total mass at the ignition are larger than those for the corresponding no-rotating model. The result supports our previous conclusion that a double-white dwarf merger would not be a progenitor of a SN Ia.Comment: 18 pages, 6 figures; To appear in the Astrophysical Journal, 1 November 2004, V615 issu

    Asymmetric Dark Matter May Alter the Evolution of Low-mass Stars and Brown Dwarfs

    Full text link
    We study energy transport by asymmetric dark matter in the interiors of very low-mass stars and brown dwarfs. Our motivation is to explore astrophysical signatures of asymmetric dark matter, which otherwise may not be amenable to conventional indirect dark matter searches. In viable models, the additional cooling of very-low mass stellar cores can alter stellar properties. Asymmetric dark matter with mass 4 < Mx/GeV < 10 and a spin-dependent (spin-independent) cross sections of sigma \sim 10^{-37} cm^2 (sigma \sim 10^{-40} cm^2) can increase the minimum mass of main sequence hydrogen burning, partly determining whether or not the object is a star at all. Similar dark matter candidates reduce the luminosities of low-mass stars and accelerate the cooling of brown dwarfs. Such light dark matter is of particular interest given results from the DAMA, CoGeNT, and CRESST dark matter searches. We discuss possibilities for observing dark matter effects in stars in the solar neighborhood, globular clusters, and, of particular promise, local dwarf galaxies, among other environments, as well as exploiting these effects to constrain dark matter properties.Comment: 6 Pages, 4 Figures. Accepted for Publication in Phys. Rev. D Rapid Communication
    corecore