199,882 research outputs found
Recommended from our members
Flow measurement inside a zinc-nickel flow cell battery using FBG based sensor system
Downloading of the abstract is permitted for personal use only. A detailed knowledge of the internal flow distribution inside a zinc-nickel flow battery is of critical importance to ensure smooth flow of the electrolyte through the battery cell and better operation of the device. Information of this type can be used as a useful means of early detection of zinc deposition and dendrite formation inside the cell, negative factors which affect the flow and thus which can lead to internal short circuiting, this being a primary failure mode of these types of batteries. This deposition occurs at low pH levels when zinc reacts with the electrolyte to form solid zinc oxide hydroxides. Traditionally, manual inspection is conducted, but this is time consuming and costly, only providing what are often inaccurate results-overall it is an impractical solution especially with the wider use of batteries in the very near future. Fibre Bragg grating (FBG) sensors integrated inside the flow cell offer the advantage of measuring flow changes at multiple locations using a single fibre and that then can be used as an indicator of the correlation between the internal flow distribution and the deposition characteristics. This work presents an initial study, where two networks of FBGs have been installed and used for flow change detection in an active zinc-nickel flow battery. Data have been obtained from the sensor networks and information of battery performance completed and summarized in this paper. The approach shows promising results and thus scope for the future research into the development of this type of sensor system
Hot Core, Outflows and Magnetic Fields in W43-MM1 (G30.79 FIR 10)
We present submillimeter spectral line and dust continuum polarization
observations of a remarkable hot core and multiple outflows in the high-mass
star-forming region W43-MM1 (G30.79 FIR 10), obtained using the Submillimeter
Array (SMA). A temperature of 400 K is estimated for the hot-core using
CHCN (J=19-18) lines, with detections of 11 K-ladder components. The high
temperature and the mass estimates for the outflows indicate high-mass
star-formation. The continuum polarization pattern shows an ordered
distribution, and its orientation over the main outflow appears aligned to the
outflow. The derived magnetic field indicates slightly super-critical
conditions. While the magnetic and outflow energies are comparable, the B-field
orientation appears to have changed from parsec scales to 0.1 pc scales
during the core/star-formation process.Comment: accepted, ApJ Letter
Approximate Treatment of Hermitian Effective Interactions and a Bound on the Error
The Hermitian effective interaction can be well-approximated by
(R+R^dagger)/2 if the eigenvalues of omega^dagger omega are small or
state-independent(degenerate), where R is the standard non-Hermitian effective
interaction and omega maps the model-space states onto the excluded space. An
error bound on this approximation is given.Comment: 13 page
Gamma-ray emission from the globular clusters Liller 1, M80, NGC 6139, NGC 6541, NGC 6624, and NGC 6752
Globular clusters (GCs) are emerging as a new class of gamma-ray emitters,
thanks to the data obtained from the Fermi Gamma-ray Space Telescope. By now,
eight GCs are known to emit gamma-rays at energies >100~MeV. Based on the
stellar encounter rate of the GCs, we identify potential gamma-ray emitting GCs
out of all known GCs that have not been studied in details before. In this
paper, we report the discovery of a number of new gamma-ray GCs: Liller 1, NGC
6624, and NGC 6752, and evidence for gamma-ray emission from M80, NGC 6139, and
NGC 6541, in which gamma-rays were found within the GC tidal radius. With one
of the highest metallicity among all GCs in the Milky Way, the gamma-ray
luminosity of Liller 1 is found to be the highest of all known gamma-ray GCs.
In addition, we confirm a previous report of significant gamma-ray emitting
region next to NGC 6441. We briefly discuss the observed offset of gamma-rays
from some GC cores. The increasing number of known gamma-ray GCs at distances
out to ~10 kpc is important for us to understand the gamma-ray emitting
mechanism and provides an alternative probe to the underlying millisecond
pulsar populations of the GCs.Comment: 22 pages, 7 figures, 2 tables; ApJ, in pres
A NuSTAR Observation of the Gamma-ray Emitting Millisecond Pulsar PSR J1723-2837
We report on the first NuSTAR observation of the gamma-ray emitting
millisecond pulsar binary PSR J1723-2837. X-ray radiation up to 79 keV is
clearly detected and the simultaneous NuSTAR and Swift spectrum is well
described by an absorbed power-law with a photon index of ~1.3. We also find
X-ray modulations in the 3-10 keV, 10-20 keV, 20-79 keV, and 3-79 keV bands at
the 14.8-hr binary orbital period. All these are entirely consistent with
previous X-ray observations below 10 keV. This new hard X-ray observation of
PSR J1723-2837 provides strong evidence that the X-rays are from the
intrabinary shock via an interaction between the pulsar wind and the outflow
from the companion star. We discuss how the NuSTAR observation constrains the
physical parameters of the intrabinary shock model.Comment: Accepted for publication in ApJ. 5 pages, 3 figure
The Precise Formula in a Sine Function Form of the norm of the Amplitude and the Necessary and Sufficient Phase Condition for Any Quantum Algorithm with Arbitrary Phase Rotations
In this paper we derived the precise formula in a sine function form of the
norm of the amplitude in the desired state, and by means of he precise formula
we presented the necessary and sufficient phase condition for any quantum
algorithm with arbitrary phase rotations. We also showed that the phase
condition: identical rotation angles, is a sufficient but not a necessary phase
condition.Comment: 16 pages. Modified some English sentences and some proofs. Removed a
table. Corrected the formula for kol on page 10. No figure
Swift, XMM-Newton, and NuSTAR observations of PSR J2032+4127/MT91 213
We report our recent Swift, NuSTAR, and XMM-Newton X-ray and Lijiang optical
observations on PSR J2032+4127/MT91 213, the gamma-ray binary candidate with a
period of 45-50 years. The coming periastron of the system was predicted to be
in November 2017, around which high-energy flares from keV to TeV are expected.
Recent studies with Chandra and Swift X-ray observations taken in 2015/16
showed that its X-ray emission has been brighter by a factors of ~10 than that
before 2013, probably revealing some on-going activities between the pulsar
wind and the stellar wind. Our new Swift/XRT lightcurve shows no strong
evidence of a single vigorous brightening trend, but rather several strong
X-ray flares on weekly to monthly timescales with a slowly brightening
baseline, namely the low state. The NuSTAR and XMM-Newton observations taken
during the flaring and the low states, respectively, show a denser environment
and a softer power-law index during the flaring state, implying that the pulsar
wind interacted with stronger stellar winds of the companion to produce the
flares. These precursors would be crucial in studying the predicted giant
outburst from this extreme gamma-ray binary during the periastron passage in
late 2017.Comment: 6 pages, including 3 figures and 2 tables. Accepted for publication
in Ap
- …