20,141 research outputs found

    Interlaced particle systems and tilings of the Aztec diamond

    Full text link
    Motivated by the problem of domino tilings of the Aztec diamond, a weighted particle system is defined on NN lines, with line jj containing jj particles. The particles are restricted to lattice points from 0 to NN, and particles on successive lines are subject to an interlacing constraint. It is shown that marginal distributions for this particle system can be computed exactly. This in turn is used to give unified derivations of a number of fundamental properties of the tiling problem, for example the evaluation of the number of distinct configurations and the relation to the GUE minor process. An interlaced particle system associated with the domino tiling of a certain half Aztec diamond is similarly defined and analyzed.Comment: 17 pages, 4 figure

    Edge scaling limits for a family of non-Hermitian random matrix ensembles

    Full text link
    A family of random matrix ensembles interpolating between the GUE and the Ginibre ensemble of n×nn\times n matrices with iid centered complex Gaussian entries is considered. The asymptotic spectral distribution in these models is uniform in an ellipse in the complex plane, which collapses to an interval of the real line as the degree of non-Hermiticity diminishes. Scaling limit theorems are proven for the eigenvalue point process at the rightmost edge of the spectrum, and it is shown that a non-trivial transition occurs between Poisson and Airy point process statistics when the ratio of the axes of the supporting ellipse is of order n1/3n^{-1/3}. In this regime, the family of limiting probability distributions of the maximum of the real parts of the eigenvalues interpolates between the Gumbel and Tracy-Widom distributions.Comment: 44 page

    Polynuclear growth model, GOE2^2 and random matrix with deterministic source

    Full text link
    We present a random matrix interpretation of the distribution functions which have appeared in the study of the one-dimensional polynuclear growth (PNG) model with external sources. It is shown that the distribution, GOE2^2, which is defined as the square of the GOE Tracy-Widom distribution, can be obtained as the scaled largest eigenvalue distribution of a special case of a random matrix model with a deterministic source, which have been studied in a different context previously. Compared to the original interpretation of the GOE2^2 as ``the square of GOE'', ours has an advantage that it can also describe the transition from the GUE Tracy-Widom distribution to the GOE2^2. We further demonstrate that our random matrix interpretation can be obtained naturally by noting the similarity of the topology between a certain non-colliding Brownian motion model and the multi-layer PNG model with an external source. This provides us with a multi-matrix model interpretation of the multi-point height distributions of the PNG model with an external source.Comment: 27pages, 4 figure

    Mock-Gaussian Behaviour for Linear Statistics of Classical Compact Groups

    Full text link
    We consider the scaling limit of linear statistics for eigenphases of a matrix taken from one of the classical compact groups. We compute their moments and find that the first few moments are Gaussian, whereas the limiting distribution is not. The precise number of Gaussian moments depends upon the particular statistic considered

    On the stability of quantum holonomic gates

    Full text link
    We provide a unified geometrical description for analyzing the stability of holonomic quantum gates in the presence of imprecise driving controls (parametric noise). We consider the situation in which these fluctuations do not affect the adiabatic evolution but can reduce the logical gate performance. Using the intrinsic geometric properties of the holonomic gates, we show under which conditions on noise's correlation time and strength, the fluctuations in the driving field cancel out. In this way, we provide theoretical support to previous numerical simulations. We also briefly comment on the error due to the mismatch between real and nominal time of the period of the driving fields and show that it can be reduced by suitably increasing the adiabatic time.Comment: 7 page

    KPZ equation in one dimension and line ensembles

    Full text link
    For suitably discretized versions of the Kardar-Parisi-Zhang equation in one space dimension exact scaling functions are available, amongst them the stationary two-point function. We explain one central piece from the technology through which such results are obtained, namely the method of line ensembles with purely entropic repulsion.Comment: Proceedings STATPHYS22, Bangalore, 200

    Increasing subsequences and the hard-to-soft edge transition in matrix ensembles

    Get PDF
    Our interest is in the cumulative probabilities Pr(L(t) \le l) for the maximum length of increasing subsequences in Poissonized ensembles of random permutations, random fixed point free involutions and reversed random fixed point free involutions. It is shown that these probabilities are equal to the hard edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively. The gap probabilities can be written as a sum over correlations for certain determinantal point processes. From these expressions a proof can be given that the limiting form of Pr(L(t) \le l) in the three cases is equal to the soft edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively, thereby reclaiming theorems due to Baik-Deift-Johansson and Baik-Rains.Comment: LaTeX, 19 page

    Non-colliding Brownian Motions and the extended tacnode process

    Full text link
    We consider non-colliding Brownian motions with two starting points and two endpoints. The points are chosen so that the two groups of Brownian motions just touch each other, a situation that is referred to as a tacnode. The extended kernel for the determinantal point process at the tacnode point is computed using new methods and given in a different form from that obtained for a single time in previous work by Delvaux, Kuijlaars and Zhang. The form of the extended kernel is also different from that obtained for the extended tacnode kernel in another model by Adler, Ferrari and van Moerbeke. We also obtain the correlation kernel for a finite number of non-colliding Brownian motions starting at two points and ending at arbitrary points.Comment: 38 pages. In the revised version a few arguments have been expanded and many typos correcte
    corecore