27 research outputs found
Recommended from our members
Sequence of events from the onset to the demise of the Last Interglacial: Evaluating strengths and limitations of chronologies used in climatic archives
The Last Interglacial (LIG) represents an invaluable case study to investigate the response of components of the Earth system to global warming. However, the scarcity of absolute age constraints in most archives leads to extensive use of various stratigraphic alignments to different reference chronologies. This feature sets limitations to the accuracy of the stratigraphic assignment of the climatic sequence of events across the globe during the LIG. Here, we review the strengths and limitations of the methods that are commonly used to date or develop chronologies in various climatic archives for the time span (âŒ140â100 ka) encompassing the penultimate deglaciation, the LIG and the glacial inception. Climatic hypotheses underlying record alignment strategies and the interpretation of tracers are explicitly described. Quantitative estimates of the associated absolute and relative age uncertainties are provided.
Recommendations are subsequently formulated on how best to define absolute and relative chronologies. Future climato-stratigraphic alignments should provide (1) a clear statement of climate hypotheses involved, (2) a detailed understanding of environmental parameters controlling selected tracers and (3) a careful evaluation of the synchronicity of aligned paleoclimatic records. We underscore the need to (1) systematically report quantitative estimates of relative and absolute age uncertainties, (2) assess the coherence of chronologies when comparing different records, and (3) integrate these uncertainties in paleoclimatic interpretations and comparisons with climate simulations.
Finally, we provide a sequence of major climatic events with associated age uncertainties for the period 140â105 ka, which should serve as a new benchmark to disentangle mechanisms of the Earth system's response to orbital forcing and evaluate transient climate simulations.KEYWORDS: Climate dynamics, Last glacial inception, Chronology, Speleothems, Ice cores, Last Interglacial, Penultimate deglaciation, Corals, Marine sediments, Peat and lake sedimentsThis is the publisherâs final pdf. The published article is copyrighted by the author(s) and published by Elsevier. The published article can be found at: http://www.journals.elsevier.com/quaternary-science-reviews
Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial
Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained â„40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5â2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62â0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16â1·59), representing a 50% (42â58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council
Mg/Ca ratios of Neogloboquadrina pachyderma (s) and Globigerina bulloides in Irminger Sea sediment trap time series
iven the importance of high-latitude areas in the ocean-climate system, there is need for a paleothermometer that is reliable at low temperatures. Here we assess the applicability of the Mg/Ca-temperature proxy in colder waters (5-10 °C) by comparing for the first time the seasonal Mg/Ca and d18O cycles of N. pachyderma (s) and G. bulloides using a sediment trap time-series from the northern North Atlantic. While both species show indistinguishable seasonal d18O patterns that clearly track the near surface temperature cycle, their Mg/Ca are very different. G. bulloides Mg/Ca is high (2.0-3.1 mmol/mol), but varies in concert with the seasonal temperature cycle. The Mg/Ca of N. pachyderma (s), on the other hand, is low (1.1-1.5 mmol/mol) and shows only a very weak seasonal cycle. The d18O patterns indicate that both species calcify in the same depth zone. Consequently, depth habitat differences cannot explain the contrasting Mg/Ca patterns. The elevated Mg/Ca in pristine G. bulloides might be due to the presence of high Mg phases that are not preserved in fossil shells. The contrasting absence of a seasonal trend in the Mg/Ca of N. pachyderma (s) confirms other studies where calcification temperatures were less well constrained. The reason for this absence is not fully known, but may include species-specific vital effects. The very different seasonal patterns of both species' Mg/Ca underscore the importance of parameters other than temperature in controlling planktonic foraminiferal Mg/Ca. Our results therefore lend further caution in the interpretation of Mg/Ca-temperature reconstructions from high northern latitudes
Sequence of events from the onset to the demise of the Last Interglacial: Evaluating strengths and limitations of chronologies used in climatic archives
© 2015 The Authors. The Last Interglacial (LIG) represents an invaluable case study to investigate the response of components of the Earth system to global warming. However, the scarcity of absolute age constraints in most archives leads to extensive use of various stratigraphic alignments to different reference chronologies. This feature sets limitations to the accuracy of the stratigraphic assignment of the climatic sequence of events across the globe during the LIG. Here, we review the strengths and limitations of the methods that are commonly used to date or develop chronologies in various climatic archives for the time span (~140-100 ka) encompassing the penultimate deglaciation, the LIG and the glacial inception. Climatic hypotheses underlying record alignment strategies and the interpretation of tracers are explicitly described. Quantitative estimates of the associated absolute and relative age uncertainties are provided.Recommendations are subsequently formulated on how best to define absolute and relative chronologies. Future climato-stratigraphic alignments should provide (1) a clear statement of climate hypotheses involved, (2) a detailed understanding of environmental parameters controlling selected tracers and (3) a careful evaluation of the synchronicity of aligned paleoclimatic records. We underscore the need to (1) systematically report quantitative estimates of relative and absolute age uncertainties, (2) assess the coherence of chronologies when comparing different records, and (3) integrate these uncertainties in paleoclimatic interpretations and comparisons with climate simulations.Finally, we provide a sequence of major climatic events with associated age uncertainties for the period 140-105 ka, which should serve as a new benchmark to disentangle mechanisms of the Earth system's response to orbital forcing and evaluate transient climate simulations
Spatially-Coupled Turbo-Coded Continuous Phase Modulation: Asymptotic Analysis and Optimization
International audienceFor serially or parallel concatenated communication systems, spatial coupling techniques enable to improve the threshold of these systems under iterative decoding using belief propagation (BP). For the case of low-density parity-check (LDPC) codes, it has been shown that, under some asymptotic assumptions, spatially coupled ensembles have BP thresholds that approach the bitwise maximum a posteriori (MAP) threshold of the related uncoupled ensemble. This phenomenon is often referred to as threshold saturation, and it has sometimes very important consequences. For example, in the case of regular LDPC code ensembles, spatial coupling enables to achieve asymptotically the capacity for any class of binary memoryless symmetric channels. Since then, this threshold saturation has been conjectured or proved for several other types of concatenations. In this work, we consider a serially concatenated scheme which is the serial concatenation of a simple outer convolutional code and a continuous phase modulator (CPM) separated by an interleaver. Then, we propose a method to do the spatial coupling of several replicas of this serially concatenated scheme, aiming to improve the asymptotic convergence threshold. First, exploiting the specific structure of the proposed system, an original procedure is proposed in order to terminate the spatially coupled turbo-coded CPM scheme. In particular, the proposed procedure aims to ensure the continuity of the transmitted signal among spatially coupled replicas, enabling to keep one of the core characteristics and advantages of coded CPM schemes. Then, based on an asymptotic analysis, we show that the proposed scheme has very competitive thresholds when compared to carefully designed spatially coupled LDPC codes. Furthermore, it is shown how we can accelerate the convergence rate of the designed systems by optimizing the connection distributions in the coupling matrices. Finally, by investigating on different continuous phase modulation schemes, we corroborate the conjecture stating that spatially coupled turbo-coded CPM schemes saturate to a lower bound very close to the threshold given by the extrinsic information transfer (EXIT) area theorem
Recommended from our members
GovinSequenceEventsOnset.pdf
The Last Interglacial (LIG) represents an invaluable case study to investigate the response of components of the Earth system to global warming. However, the scarcity of absolute age constraints in most archives leads to extensive use of various stratigraphic alignments to different reference chronologies. This feature sets limitations to the accuracy of the stratigraphic assignment of the climatic sequence of events across the globe during the LIG. Here, we review the strengths and limitations of the methods that are commonly used to date or develop chronologies in various climatic archives for the time span (âŒ140â100 ka) encompassing the penultimate deglaciation, the LIG and the glacial inception. Climatic hypotheses underlying record alignment strategies and the interpretation of tracers are explicitly described. Quantitative estimates of the associated absolute and relative age uncertainties are provided.
Recommendations are subsequently formulated on how best to define absolute and relative chronologies. Future climato-stratigraphic alignments should provide (1) a clear statement of climate hypotheses involved, (2) a detailed understanding of environmental parameters controlling selected tracers and (3) a careful evaluation of the synchronicity of aligned paleoclimatic records. We underscore the need to (1) systematically report quantitative estimates of relative and absolute age uncertainties, (2) assess the coherence of chronologies when comparing different records, and (3) integrate these uncertainties in paleoclimatic interpretations and comparisons with climate simulations.
Finally, we provide a sequence of major climatic events with associated age uncertainties for the period 140â105 ka, which should serve as a new benchmark to disentangle mechanisms of the Earth system's response to orbital forcing and evaluate transient climate simulations.Keywords: Ice cores, Last glacial inception, Last Interglacial, Chronology, Corals, Climate dynamics, Peat and lake sediments, Penultimate deglaciation, Speleothems, Marine sediment
Recommended from our members
GovinSequenceEventsOnsetSuppMaterial.pdf
The Last Interglacial (LIG) represents an invaluable case study to investigate the response of components of the Earth system to global warming. However, the scarcity of absolute age constraints in most archives leads to extensive use of various stratigraphic alignments to different reference chronologies. This feature sets limitations to the accuracy of the stratigraphic assignment of the climatic sequence of events across the globe during the LIG. Here, we review the strengths and limitations of the methods that are commonly used to date or develop chronologies in various climatic archives for the time span (âŒ140â100 ka) encompassing the penultimate deglaciation, the LIG and the glacial inception. Climatic hypotheses underlying record alignment strategies and the interpretation of tracers are explicitly described. Quantitative estimates of the associated absolute and relative age uncertainties are provided.
Recommendations are subsequently formulated on how best to define absolute and relative chronologies. Future climato-stratigraphic alignments should provide (1) a clear statement of climate hypotheses involved, (2) a detailed understanding of environmental parameters controlling selected tracers and (3) a careful evaluation of the synchronicity of aligned paleoclimatic records. We underscore the need to (1) systematically report quantitative estimates of relative and absolute age uncertainties, (2) assess the coherence of chronologies when comparing different records, and (3) integrate these uncertainties in paleoclimatic interpretations and comparisons with climate simulations.
Finally, we provide a sequence of major climatic events with associated age uncertainties for the period 140â105 ka, which should serve as a new benchmark to disentangle mechanisms of the Earth system's response to orbital forcing and evaluate transient climate simulations.Keywords: Last Interglacial, Penultimate deglaciation, Chronology, Climate dynamics, Last glacial inception, Speleothems, Ice cores, Peat and lake sediments, Marine sediments, CoralsKeywords: Last Interglacial, Penultimate deglaciation, Chronology, Climate dynamics, Last glacial inception, Speleothems, Ice cores, Peat and lake sediments, Marine sediments, Coral
Long-term effects of coronavirus disease 2019 on the cardiovascular system, CV COVID registry: A structured summary of a study protocol
Background Patients presenting with the coronavirus-2019 disease (COVID-19) may have a high risk of cardiovascular adverse events, including death from cardiovascular causes. The long-term cardiovascular outcomes of these patients are entirely unknown. We aim to perform a registry of patients who have undergone a diagnostic nasopharyngeal swab for SARS-CoV-2 and to determine their long-term cardiovascular outcomes. Study and design This is a multicenter, observational, retrospective registry to be conducted at 17 centers in Spain and Italy (ClinicalTrials.gov number: NCT04359927). Consecutive patients older than 18 years, who underwent a real-time reverse transcriptase-polymerase chain reaction (RTPCR) for SARS-CoV2 in the participating institutions, will be included since March 2020, to August 2020. Patients will be classified into two groups, according to the results of the RTPCR: COVID-19 positive or negative. The primary outcome will be cardiovascular mortality at 1 year. The secondary outcomes will be acute myocardial infarction, stroke, heart failure hospitalization, pulmonary embolism, and serious cardiac arrhythmias, at 1 year. Outcomes will be compared between the two groups. Events will be adjudicated by an independent clinical event committee. Conclusion The results of this registry will contribute to a better understanding of the long-term cardiovascular implications of the COVID19
OPTImized Coronary Interventions EXplaIn the BEst CliNical OutcomEs (OPTI-XIENCE) Study. Rationale and Study Design
Introduction: Clinical events may occur after percutaneous coronary intervention (PCI), particularly in complex lesions and complex patients. The optimization of PCI result, using pressure guidewire and intracoronary imaging techniques, may reduce the risk of these events. The hypothesis of the present study is that the clinical outcome of patients with indication of PCI and coronary stent implantation that are at high risk of events can be improved with an unrestricted use of intracoronary tools that allow PCI optimization.
Methods and analysis: Observational prospective multicenter international study, with a follow-up of 12 months, including 1064 patients treated with a cobaltâchromium everolimus-eluting stent. Inclusion criteria include any of the following: Lesion length > 28 mm; Reference vessel diameter 4.25 mm; Chronic total occlusion; Bifurcation with side branch â„2.0 mm;Ostial lesion; Left main lesion; In-stent restenosis; >2 lesions stented in the same vessel; Treatment of >2 vessels; Acute myocardial infarction; Renal insufficiency; Left ventricular ejection fraction <30 %; Staged procedure. The control group will be comprised by a similar number of matched patients included in the "extended risk" cohort of the XIENCE V USA study. The primary endpoint will be the 1-year rate of target lesion failure (TLF) (composite of ischemia-driven TLR, myocardial infarction (MI) related to the target vessel, or cardiac death related to the target vessel). Secondary endpoints will include overall mortality, cardiovascular mortality, acute myocardial infarction, TVR, TLR, target vessel failure, and definitive or probable stent thrombosis at 1 year.
Implications: The ongoing OPTI-XIENCE study will contribute to the growing evidence supporting the use of intra-coronary imaging techniques for stent optimization in patients with complex coronary lesions.info:eu-repo/semantics/publishedVersio