549 research outputs found

    PRM82 The value of value in health economic modelling

    Get PDF

    Shared CSF Biomarker Profile in Idiopathic Normal Pressure Hydrocephalus and Subcortical Small Vessel Disease

    Get PDF
    Introduction: In this study, we examine similarities and differences between 52 patients with idiopathic normal pressure hydrocephalus (iNPH) and 17 patients with subcortical small vessel disease (SSVD), in comparison to 28 healthy controls (HCs) by a panel of cerebrospinal fluid (CSF) biomarkers. Methods: We analyzed soluble amyloid precursor protein alpha (sAPPα) and beta (sAPPβ), Aβ isoforms −38, −40, and −42, neurofilament light protein (NFL), glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), matrix metalloproteinases (MMP −1, −2, −3, −9, and −10), and tissue inhibitors of metalloproteinase 1 (TIMP1). Radiological signs of white matter damage were scored using the age-related white matter changes (ARWMC) scale. Results: All amyloid fragments were reduced in iNPH and SSVD (p < 0.05), although more in iNPH than in SSVD in comparison to HC. iNPH and SSVD showed comparable elevations of NFL, MBP, and GFAP (p < 0.05). MMPs were similar in all three groups except for MMP-10, which was increased in iNPH and SSVD. Patients with iNPH had larger ventricles and fewer WMCs than patients with SSVD. Conclusion: The results indicate that patients with iNPH and SSVD share common features of subcortical neuronal degeneration, demyelination, and astroglial response. The reduction in all APP-derived proteins characterizing iNPH patients is also present, indicating that SSVD encompasses similar pathophysiological phenomena as iNPH

    Palaeobiology, ecology, and distribution of stromatoporoid faunas in biostromes of the mid-Ludlow of Gotland

    Get PDF
    Six well exposed mid−Ludlow stromatoporoid−dominated reef biostromes in four localities from the Hemse Group in southeastern Gotland, Sweden comprise a stromatoporoid assemblage dominated by four species; Clathrodictyon mohicanum, “Stromatopora” bekkeri, Plectostroma scaniense, and Lophiostroma schmidtii. All biostromes investigated in this area (of approximately 30 km2) are interpreted to belong to a single faunal assemblage forming a dense accumulation of fossils that is probably the best exposed stromatoporoid−rich deposit of the Silurian. The results from this comprehensive study strengthen earlier interpretations of a combination of genetic and environmental control on growth−forms of the stromatoporoids. Growth styles are similar for stromatoporoids in all six biostromes. Differences in biostrome fabric are due to variations in the degree of disturbance by storms. The uniformity of facies and the widespread low−diversity fauna support the view that palaeoenvironmental conditions were similar across the area where these biostromes crop out, and promoted the extraordinary growth of stromatoporoids in this shallow shelf area

    Plasma and cerebrospinal fluid concentrations of neurofilament light protein correlate in patients with idiopathic normal pressure hydrocephalus

    Get PDF
    BACKGROUND: Neurofilament light chain protein (NFL), a marker of neuronal axonal degeneration, is increased in cerebrospinal fluid (CSF) of patients with idiopathic normal pressure hydrocephalus (iNPH). Assays for analysis of NFL in plasma are now widely available but plasma NFL has not been reported in iNPH patients. Our aim was to examine plasma NFL in iNPH patients and to evaluate the correlation between plasma and CSF levels, and whether NFL levels are associated with clinical symptoms and outcome after shunt surgery. METHODS: Fifty iNPH patients with median age 73 who had their symptoms assessed with the iNPH scale and plasma and CSF NFL sampled pre- and median 9 months post-operatively. CSF plasma was compared with 50 healthy controls (HC) matched for age and gender. Concentrations of NFL were determined in plasma using an in-house Simoa method and in CSF using a commercially available ELISA method. RESULTS: Plasma NFL was elevated in patients with iNPH compared to HC (iNPH: 45 (30-64) pg/mL; HC: 33 (26-50) (median; Q1-Q3), p = 0.029). Plasma and CSF NFL concentrations correlated in iNPH patients both pre- and postoperatively (r = 0.67 and 0.72, p < 0.001). We found only weak correlations between plasma or CSF NFL and clinical symptoms and no associations with outcome. A postoperative NFL increase was seen in CSF but not in plasma. CONCLUSIONS: Plasma NFL is increased in iNPH patients and concentrations correlate with CSF NFL implying that plasma NFL can be used to assess evidence of axonal degeneration in iNPH. This finding opens a window for plasma samples to be used in future studies of other biomarkers in iNPH. NFL is probably not a very useful marker of symptomatology or for prediction of outcome in iNPH
    corecore