5 research outputs found

    Using Metric Distance Ranking Method to Find Intuitionistic Fuzzy Critical Path

    No full text
    Network analysis is a technique which determines the various sequences of activities concerning a project and the project completion time. The popular methods of this technique which is widely used are the critical path method and program evaluation and review techniques. The aim of this paper is to present an analytical method for measuring the criticality in an (Atanassov) intuitionistic fuzzy project network. Vague parameters in the project network are represented by (Atanassov) intuitionistic trapezoidal fuzzy numbers. A metric distance ranking method for (Atanassov) intuitionistic fuzzy numbers to a critical path method is proposed. (Atanassov) Intuitionistic fuzzy critical length of the project network is found without converting the (Atanassov) intuitionistic fuzzy activity times to classical numbers. The fuzzified conversion of the problem has been discussed with the numerical example. We also apply four different ranking procedures and we compare it with metric distance ranking method. Comparison reveals that the proposed ranking method is better than other raking procedures

    Using Metric Distance Ranking Method to Find Intuitionistic Fuzzy Critical Path

    No full text
    Network analysis is a technique which determines the various sequences of activities concerning a project and the project completion time. The popular methods of this technique which is widely used are the critical path method and program evaluation and review techniques. The aim of this paper is to present an analytical method for measuring the criticality in an (Atanassov) intuitionistic fuzzy project network. Vague parameters in the project network are represented by (Atanassov) intuitionistic trapezoidal fuzzy numbers. A metric distance ranking method for (Atanassov) intuitionistic fuzzy numbers to a critical path method is proposed. (Atanassov) Intuitionistic fuzzy critical length of the project network is found without converting the (Atanassov) intuitionistic fuzzy activity times to classical numbers. The fuzzified conversion of the problem has been discussed with the numerical example. We also apply four different ranking procedures and we compare it with metric distance ranking method. Comparison reveals that the proposed ranking method is better than other raking procedures

    Using Trapezoidal Intuitionistic Fuzzy Number to Find Optimized Path in a Network

    Get PDF
    In real life, information available on situations/issues/problems is vague, inexact, or insufficient and so the parameters involved therein are grasped in an uncertain way by the decision maker. But in real life such uncertainty is unavoidable. One possible way out is to consider the knowledge of experts about the parameters involved as fuzzy data. In a network, the arc length may represent time or cost. In Relevant literature reports there are several methods to solve such problems in network-flow. This paper proposes an optimized path for use in networks, using trapezoidal intuitionistic fuzzy numbers, assigned to each arc length in a fuzzy environment. It proposes a new algorithm to find the optimized path and implied distance from source node to destination node
    corecore