166 research outputs found
Design requirements of upper extremity supports for daily use in Duchenne muscular dystrophy with severe muscle weakness
BackgroundPeople with Duchenne muscular dystrophy (DMD) cope with progressive muscular weakness and consequential upper extremity function loss. They benefit from arm supports, or arm exoskeletons, to assist arm function. Especially for severe muscle weakness (DMD >= Brooke Scale 4), the design of such arm support is challenging. This study aims to structurally develop functional and technical design requirements of arm supports for people with DMD Brooke Scale 4.MethodsAn overview of clinical characteristics and a classification of clinically meaningful activities were derived from data from the Dutch Dystrophinopathy Database and available literature. Based on these, functional and technical design requirements of arm supports were developed and matched to the achievable needs of the user.ResultsFirst, the clinical characteristics of the target population, such as strength, range of motion, and functional ability, are given. Next, clinically relevant activities of daily living are translated to functional requirements categorised in a 'must,' 'should,' and 'could' category. Last, the technical requirements to realise these functional goals are presented.ConclusionsThe recommendations following from the functional user needs, technical requirements, and safety considerations can be used to make the development of assistive arm supports for people with DMD Brooke Scale 4 more user-centred
Geometry of the Intervertebral Volume and Vertebral Endplates of the Human Spine
Replacement of a degenerated vertebral disc with an artificial intervertebral disc (AID) is currently possible, but poses problems, mainly in the force distribution through the vertebral column. Data on the intervertebral disc space geometry will provide a better fit of the prosthesis to the vertebrae, but current literature on vertebral disc geometry is very scarce or not suitable. In this study, existing CT-scans of 77 patients were analyzed to measure the intervertebral disc and vertebral endplate geometry of the lumbar spine. Ten adjacent points on both sides of the vertebrae (S1-superior to T12-inferior) and sagittal and transverse diameters were measured to describe the shape of the caudal and cranial vertebral planes of the vertebrae. It was found that the largest endplate depth is located in the middle or posterior regions of the vertebra, that there is a linear relationship between all inferior endplate depths and the endplate location (p < 0.0001) within the spinal column, and that the superior endplate depth increases with age by about 0.01 mm per year (p < 0.02). The wedge angle increases from T12-L1 to L5-S1. The results allow for improvement of the fit of intervertebral disc-prostheses to the vertebrae and optimized force transmission through the vertebral column
Mutation-specific reporter for optimization and enrichment of prime editing
Prime editing is a versatile genome-editing technique that shows great promise for the generation and repair of patient mutations. However, some genomic sites are difficult to edit and optimal design of prime-editing tools remains elusive. Here we present a fluorescent prime editing and enrichment reporter (fluoPEER), which can be tailored to any genomic target site. This system rapidly and faithfully ranks the efficiency of prime edit guide RNAs (pegRNAs) combined with any prime editor variant. We apply fluoPEER to instruct correction of pathogenic variants in patient cells and find that plasmid editing enriches for genomic editing up to 3-fold compared to conventional enrichment strategies. DNA repair and cell cycle-related genes are enriched in the transcriptome of edited cells. Stalling cells in the G1/S boundary increases prime editing efficiency up to 30%. Together, our results show that fluoPEER can be employed for rapid and efficient correction of patient cells, selection of gene-edited cells, and elucidation of cellular mechanisms needed for successful prime editing
Intestinal Obstruction Syndromes in Cystic Fibrosis: Meconium Ileus, Distal Intestinal Obstruction Syndrome, and Constipation
Meconium ileus at birth, distal intestinal obstruction syndrome (DIOS), and constipation are an interrelated group of intestinal obstruction syndromes with a variable severity of obstruction that occurs in cystic fibrosis patients. Long-term follow-up studies show that today meconium ileus is not a risk factor for impaired nutritional status, pulmonary function, or survival. DIOS and constipation are frequently seen in cystic fibrosis patients, especially later in life; genetic, dietary, and other associations have been explored. Diagnosis of DIOS is based on suggestive symptoms, with a right lower quadrant mass confirmed on abdominal radiography, whereas symptoms of constipation are milder and of longer standing. In DIOS, early aggressive laxative treatment with oral laxatives (polyethylene glycol) or intestinal lavage with balanced osmotic electrolyte solution and rehydration is required, which now makes the need for surgical interventions rare. Constipation can generally be well controlled with polyethylene glycol maintenance treatment
ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing
We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H−1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation
- …