10,706 research outputs found

    The mechanism of pyridine hydrogenolysis on molybdenum-containing catalysts : II. Hydrogenation of pyridine to piperidine

    Get PDF
    The kinetics of pyridine hydrogenation was studied at high hydrogen pressures on a Mo-Al oxide and a Co-Mo-Al oxide catalyst. The rate equation was found to be r = kPpyrPH2n/Ppyro, in which n is 1.5 at 300 and 375 °C and 1.0 at 250 °C. This rate equation can be derived assuming strong adsorption of pyridine and its products with identical adsorption constants.\ud The (hydro)cracking of piperidine appears to have a low order in hydrogen, probably lower than 0.5.\ud The adsorption behavior of nitrogen bases and hydrogen on alumina and the molybdenum-containing catalysts was investigated by the gas chromatographic method. The adsorption of the nitrogen bases appeared to be very strong on both catalysts, and varied in the order piperidine > pyridine > ammonia.\ud Hydrogen also showed a strong adsorption. Hydrogen and nitrogen bases appeared to adsorb on different sites

    Phase separation processes in polymer solutions in relation to membrane formation

    Get PDF
    This review covers new experimental and theoretical physical research related to the formation of polymeric membranes by phase separation of a polymer solution, and to the morphology of these membranes. Two main phase separation processes for polymeric membrane formation are discussed: thermally induced phase separation and immersion precipitation. Special attention is paid to phase transitions like liquid-liquid demixing, crystallization, gelation, and vitrification, and their relation to membrane morphology. In addition, the mass transfer processes involved in immersion precipitation, and their influence on membrane morphology are discussed

    Metastable liquid-liquid and solid-liquid phase boundaries in polymer-solvent-nonsolvent systems

    Get PDF
    In general liquid-liquid demixing processes are responsible for the porous morphology of membranes obtained by immersion precipitation. For rapidly crystallizing polymers, solid-liquid demixing processes also generate porous morphologies. In this study, the interference of both phase transitions has been analyzed theoretically using the Flory-Huggins theory for ternary polymer solutions. It is demonstrated that four main thermodynamic and kinetic parameters are important for the structure formation in solution: the thermodynamic driving force for crystallization, the ratio of the molar volumes of the solvent and the nonsolvent, the polymer-solvent interaction parameter, and the rate of crystallization of the polymer compared to the rate of solvent-nonsolvent exchange. An analysis of the relevance of each of these parameters for the membrane morphology is presented

    A morphological study of membranes obtained from the systems polylactide-dioxane-methanol, polylactide-dioxane-water and polylactide-N-methyl pyrrolidone-water

    Get PDF
    The influence of liquid-liquid demixing, solid-liquid demixing, and vitrification on the membrane morphologies obtained from several polylactide-solvent-nonsolvent systems has been investigated. The polymers investigated were the semicrystalline poly-L-lactide (PLLA) and the amorphous poly-DL-lactide (PDLLA). The solvent-nonsolvent systems used were dioxane-water, N-methyl pyrrolidone-water and dioxane-methanol. For each of these systems it was attempted to relate the membrane morphology to the ternary phase diagram at 25°C. It was demonstrated that for the amorphous poly-DL-lactide the intersection of a glass transition and a liquid-liquid miscibility gap in the phase diagram was a prerequisite for the formation of stable membrane structures. For the semicrystalline PLLA a wide variety of morphologies could be obtained ranging from cellular to spherulitical structures. For membrane-forming combinations that show delayed demixing, trends expected on the basis of phase diagrams were in reasonable agreement with the observed membrane morphologies. Only for the rapidly precipitating system PLLA-N-methyl pyrrolidone-water were structures due to liquid-liquid demixing obtained when structures due to solid-liquid demixing were expected. Probably, rapid precipitation conditions promote solid-liquid demixing over liquid-liquid demixing, because the activation energy necessary for liquid-liquid demixing is lower than that for crystallization

    In situ analysis of solvent/nonsolvent exchange and phase separation processes during the membrane formation of polylactides

    Get PDF
    Membrane formation of polylactides has been studied using in situ analysis techniques. An experimental method based on the use of dark ground optics and reflected light illumination is used to monitor the mass transfer and phase separation dynamics during for mation. Additionally, the phase separation and structure formation has been studied using optical microscopy. The results of the dark ground optics technique for the polymer/solvent/nonsolvent systems poly-L-lactide/chloroform/methanol and poly-DL-lactide/chloroform/methanol showed that the diffusion kinetics were similar for the semicrystalline poly-L-lactide (PLLA) and the amorphous poly-DL-lactide. The influence of the molecular weight of the polymers on the diffusion kinetics was found to be negligible. Increasing the polymer concentration of the casting solution decreased the rate of diffusion. The phase separation of poly-DL-lactide was studied with optical microscopy and found to proceed via liquid-liquid demixing. For poly-L-lactide solutions of relatively low concentration (5-6% w/w), phase separation proceeded via liquid-liquid demixing followed by crystallization. For more concentrated PLLA solutions, phase separation proceeded directly via solid-liquid demixing processes. Additionally, for 6% w/w solutions of poly-L-lactide in dioxane immersed in methanol, precipitation also occurred solely via solid-liquid demixing

    Monolithic Integration of a Novel Microfluidic Device with Silicon Light Emitting Diode-Antifuse and Photodetector

    Get PDF
    Light emitting diode antifuse has been integrated into a microfluidic device that is realized with extended standard CMOS technological steps. The device comprises of a microchannel sandwiched between a photodiode detector and a nanometer-scale diode antifuse light emitter. Within this contribution, the device fabrication process, working principle and properties will be discussed. Change in the interference fringe of the antifuse spectra has been measured due to the filling of the channel. Preliminary applications are electroosmotic flow speed measurement, detection of absorptivity of liquids in the channe

    Phase transitions during membrane formation of polylactides. I. A morphological study of membranes obtained from the system polylactide-chloroform-methanol

    Get PDF
    The influence of solid-liquid demixing, liquid-liquid demixing and vitrification on the morphology of polylactide membranes has been investigated. To study the effects of crystallization of polylactides on the membrane and morphology, polylactides of varying stereoregularity were used. The polymers applied were poly--lactide (PLLA) and copolymers with different molar ratios of -lactide and -lactide [poly-L95/D5-lactide (PLA95), poly-L80/D20-lactide (PLA80) and poly-L50/D50-lactide (PDLLA)]. Solutions of polylactides in chloroform cast on a glass plate were immersed in methanol. From solutions containing the slowly crystallizing PLA80 or uncrystallizable PDLLA porous membranes were obtained if the phase separated system was removed from the nonsolvent bath within a few hours after immersion. After longer equilibration times in methanol the structure collapsed. The swelling in the nonsolvent methanol was too high to allow stabilization of the liquid-liquid demixed structure by vitrification. Stable membranes were easily obtained with more rapidly crystallizing polymers like PLLA. Casting solutions with low PLLA concentrations gave membranes with a cellular morphology due to liquid-liquid demixing by nucleation and growth of a polymer poor phase. Crystallization only played a role in the fixation of the liquid-liquid demixed structure. At increasing PLLA concentrations the demixing sequence gradually reversed to crystallization followed by liquid-liquid demixing. In these cases membranes with porous spherulites or spherulites surrounded with a cellular layer were obtained

    A micro CO2 gas sensor based on sensing of pH-sensitive hydrogel swelling by means of a pressure sensor

    Get PDF
    In this paper a sensor is presented for the detection of carbon dioxide gas inside the stomach in order to diagnose gastrointestinal ischemia. The operational principle of the sensor is measuring the CO/sub 2/ induced pressure generation of a confined pH-sensitive hydrogel by means of a micro pressure sensor. The sensor is capable of measuring CO/sub 2/ with a response time between 2 and 4 minutes and a maximum pressure of 0.29/spl times/10/sup 5/ Pa at 20 kPa CO/sub 2/. The sensor is able to resist up to 1 M HCl acid as can be present inside the stomach. The results are very promising for real application and clinical trials are planned

    The Lateral Torsional Buckling Strength of Cold-formed Stainless Steel Beams

    Get PDF
    The findings of an investigation of the lateral torsional buckling strength of cold-formed stainless steel beams are reported in this study. The sections under consideration are cold-formed lipped channel sections spot-welded back to back to form doubly-symmetric lipped I-beams. The beams were fabricated from a modified AISI Type 409 stainless steel, designated Type 3CR12 corrosion resisting steel. The purpose of this study is to compare the experimental lateral torsional buckling strengths of doubly-symmetric beams to the theoretical predictions proposed by the ASCE Specification for the Design of Cold-Formed Stainless Steel Structural Members. It was concluded in this investigation that an acceptable prediction of beam strength may be obtained through the use of the tangent modulus approach adopted in the ASCE stainless steel design specification
    • …
    corecore