2,272 research outputs found

    An effectual template bank for the detection of gravitational waves from inspiralling compact binaries with generic spins

    Get PDF
    We report the construction of a three-dimensional template bank for the search for gravitational waves from inspiralling binaries consisting of spinning compact objects. The parameter space consists of two dimensions describing the mass parameters and one "reduced-spin" parameter, which describes the secular (non-precessing) spin effects in the waveform. The template placement is based on an efficient stochastic algorithm and makes use of the semi-analytical computation of a metric in the parameter space. We demonstrate that for "low-mass" (m1+m212Mm_1 + m_2 \lesssim 12\,M_\odot) binaries, this template bank achieves effective fitting factors 0.92\sim0.92--0.990.99 towards signals from generic spinning binaries in the advanced detector era over the entire parameter space of interest (including binary neutron stars, binary black holes, and black hole-neutron star binaries). This provides a powerful and viable method for searching for gravitational waves from generic spinning low-mass compact binaries. Under the assumption that spin magnitudes of black-holes [neutron-stars] are uniformly distributed between 0--0.98 [0 -- 0.4] and spin angles are isotropically distributed, the expected improvement in the average detection volume (at a fixed signal-to-noise-ratio threshold) of a search using this reduced-spin bank is 2052%\sim20-52\%, as compared to a search using a non-spinning bank.Comment: Minor changes, version appeared in Phys. Rev.

    Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope

    Get PDF
    We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECRs) with a Fluorescence detector Array of Single-pixel Telescopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report first results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photomultiplier tube at the focal plane of a 1 m2^2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment. The FAST prototype took data for 19 nights, demonstrating remarkable operational stability. We detected laser shots at distances of several kilometres as well as 16 highly significant UHECR shower candidates.Comment: Accepted for publication in Astroparticle Physic

    Optical Relative Calibration and Stability Monitoring for the Auger Fluorescence Detector

    Full text link
    The stability of the fluorescence telescopes of the Pierre Auger Observatory is monitored with the optical relative calibration setup. Optical fibers distribute light pulses to three different diffuser groups within the optical system. The total charge per pulse is measured for each pixel and compared with reference calibration measurements. This allows monitoring the short and long term stability with respect of the relative timing between pixels and the relative gain for each pixel. The designs of the LED calibration unit (LCU) and of the Xenon flash lamp used for relative calibration, are described and their capabilities to monitor the stability of the telescope performances are studied. We report the analysis of relative calibration data recorded during 2004. Fluctuations in the relative calibration constants provide a measure of the stability of the FD.Comment: 4 pp. To appear in the proceedings of 29th International Cosmic Ray Conference (ICRC 2005), Pune, India, 3-11 Aug 200

    Search for microwave emission from ultrahigh energy cosmic rays

    Full text link
    We present a search for microwave emission from air showers induced by ultrahigh energy cosmic rays with the microwave detection of air showers experiment. No events were found, ruling out a wide range of power flux and coherence of the putative emission, including those suggested by recent laboratory measurements.Comment: 5 pages, 3 figure

    Review of recent experimental progresses in Foundations of Quantum Mechanics and Quantum Information obtained in Parametric Down Conversion Experiments at IENGF

    Full text link
    We review some recent experimental progresses concerning Foundations of Quantum Mechanics and Quantum Information obtained in Quantum Optics Laboratory "Carlo Novero" at IENGF. More in details, after a short presentation of our polarization entangled photons source (based on precise superposition of two Type I PDC emission) and of the results obtained with it, we describe an innovative double slit experiment where two degenerate photons produced by PDC are sent each to a specific slit. Beyond representing an interesting example of relation between visibility of interference and "welcher weg" knowledge, this configuration has been suggested for testing de Broglie-Bohm theory against Standard Quantum Mechanics. Our results perfectly fit SQM results, but disagree with dBB predictions. Then, we discuss a recent experiment addressed to clarify the issue of which wave-particle observables are really to be considered when discussing wave particle duality. This experiments realises the Agarwal et al. theoretical proposal, overcoming limitations of a former experiment. Finally, we hint to the realization of a high-intensity high-spectral-selected PDC source to be used for quantum information studies

    The MIDAS experiment: A prototype for the microwave emission of Ultra-High Energy Cosmic Rays

    Full text link
    Recent measurements suggest that extensive air showers initiated by ultra-high energy cosmic rays (UHECR) emit signals in the microwave band of the electromagnetic spectrum caused by the collisions of the free-electrons with the atmospheric neutral molecules in the plasma produced by the passage of the shower. Such emission is isotropic and could allow the detection of air showers with 100% duty cycle and a calorimetric-like energy measurement, a significant improvement over current detection techniques. We have built MIDAS (MIcrowave Detection of Air Showers), a prototype of microwave detector, which consists of a 4.5 m diameter antenna with a cluster of 53 feed-horns in the 4 GHz range. The details of the prototype and first results will be presented.Comment: To appear in the proceedings of 12th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD10), Siena, Italy, 7 - 10 June 201
    corecore