240 research outputs found

    Dynamic programming with approximation function for nurse scheduling

    Get PDF
    Although dynamic programming could ideally solve any combinatorial optimization problem, the curse of dimensionality of the search space seriously limits its application to large optimization problems. For example, only few papers in the literature have reported the application of dynamic programming to workforce scheduling problems. This paper investigates approximate dynamic programming to tackle nurse scheduling problems of size that dynamic programming cannot tackle in practice. Nurse scheduling is one of the problems within workforce scheduling that has been tackled with a considerable number of algorithms particularly meta-heuristics. Experimental results indicate that approximate dynamic programming is a suitable method to solve this problem effectively

    HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution

    Get PDF
    The mandate of the Task Force Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) is to improve the scientific understanding of the intercontinental air pollution transport, to quantify impacts on human health, vegetation and climate, to identify emission mitigation options across the regions of the Northern Hemisphere, and to guide future policies on these aspects. The harmonization and improvement of regional emission inventories is imperative to obtain consolidated estimates on the formation of global-scale air pollution. An emissions data set has been constructed using regional emission grid maps (annual and monthly) for SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC for the years 2008 and 2010, with the purpose of providing consistent information to global and regional scale modelling efforts. This compilation of different regional gridded inventories - including that of the Environmental Protection Agency (EPA) for USA, the EPA and Environment Canada (for Canada), the European Monitoring and Evaluation Programme (EMEP) and Netherlands Organisation for Applied Scientific Research (TNO) for Europe, and the Model Inter-comparison Study for Asia (MICS-Asia III) for China, India and other Asian countries - was gap-filled with the emission grid maps of the Emissions Database for Global Atmospheric Research (EDGARv4.3) for the rest of the world (mainly South America, Africa, Russia and Oceania). Emissions from seven main categories of human activities (power, industry, residential, agriculture, ground transport, aviation and shipping) were estimated and spatially distributed on a common grid of 0.1 degree W 0.1 degree longitude-latitude, to yield monthly, global, sector-specific grid maps for each substance and year. The HTAP_v2.2 air pollutant grid maps are considered to combine latest available regional information within a complete global data set. The disaggregation by sectors, high spatial and temporal resolution and detailed information on the data sources and references used will provide the user the required transparency. Because HTAP_v2.2 contains primarily official and/or widely used regional emission grid maps, it can be recommended as a global baseline emission inventory, which is regionally accepted as a reference and from which different scenarios assessing emission reduction policies at a global scale could start. An analysis of country-specific implied emission factors shows a large difference between industrialised countries and developing countries for acidifying gaseous air pollutant emissions (SO2 and NOx) from the energy and industry sectors. This is not observed for the particulate matter emissions (PM10, PM2.5), which show large differences between countries in the residential sector instead. The per capita emissions of all world countries, classified from low to high income, reveal an increase in level and in variation for gaseous acidifying pollutants, but not for aerosols. For aerosols, an opposite trend is apparent with higher per capita emissions of particulate matter for low income countries

    Historical (1750 - 2014) anthropogenic emissions of reactive gases and aerosols from the Community Emission Data System (CEDS)

    Get PDF
    We present a new data set of annual historical (1750–2014) anthropogenic chemically reactive gases (CO, CH4, NH3, NOX, SO2, NMVOC), carbonaceous aerosols (BC and OC), and CO2 developed with the Community Emissions Database System (CEDS). We improve upon existing inventories with a more consistent and reproducible methodology applied to all emissions species, updated emission factors, and recent estimates through 2014. The data system relies on existing energy consumption data sets and regional and country-specific inventories to produce trends over recent decades. All emissions species are consistently estimated using the same activity data over all time periods. Emissions are provided on an annual basis at the level of country and sector and gridded with monthly seasonality. These estimates are comparable to, but generally slightly higher than, existing global inventories. Emissions over the most recent years are more uncertain, particularly in low- and middle-income regions where country-specific emission inventories are less available. Future work will involve refining and updating these emission estimates, estimating emissions uncertainty, and publication of the system as open source software

    The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990-2018

    Get PDF
    Reliable quantification of the sources and sinks of atmospheric carbon dioxide (CO2), including that of their trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Kyoto Protocol and the Paris Agreement. This study provides a consolidated synthesis of estimates for all anthropogenic and natural sources and sinks of CO2 for the European Union and UK (EU27 + UK), derived from a combination of state-of-the-art bottom-up (BU) and top-down (TD) data sources and models. Given the wide scope of the work and the variety of datasets involved, this study focuses on identifying essential questions which need to be answered to properly understand the differences between various datasets, in particular with regards to the less-well-characterized fluxes from managed ecosystems. The work integrates recent emission inventory data, process-based ecosystem model results, data-driven sector model results and inverse modeling estimates over the period 1990-2018. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported under the UNFCCC in 2019, aiming to assess and understand the differences between approaches. For the uncertainties in NGHGIs, we used the standard deviation obtained by varying parameters of inventory calculations, reported by the member states following the IPCC Guidelines. Variation in estimates produced with other methods, like atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arises from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. In comparing NGHGIs with other approaches, a key source of uncertainty is that related to different system boundaries and emission categories (CO2 fossil) and the use of different land use definitions for reporting emissions from land use, land use change and forestry (LULUCF) activities (CO2 land). At the EU27 + UK level, the NGHGI (2019) fossil CO2 emissions (including cement production) account for 2624 Tg CO2 in 2014 while all the other seven bottom-up sources are consistent with the NGHGIs and report a mean of 2588 (± 463 Tg CO2). The inversion reports 2700 Tg CO2 (± 480 Tg CO2), which is well in line with the national inventories. Over 2011-2015, the CO2 land sources and sinks from NGHGI estimates report-90 Tg C yr-1 ± 30 Tg C yr-1 while all other BU approaches report a mean sink of-98 Tg C yr-1 (± 362 Tg of C from dynamic global vegetation models only). For the TD model ensemble results, we observe a much larger spread for regional inversions (i.e., mean of 253 Tg C yr-1 ± 400 Tg C yr-1). This concludes that (a) current independent approaches are consistent with NGHGIs and (b) their uncertainty is too large to allow a verification because of model differences and probably also because of the definition of "CO2 flux"obtained from different approaches. The referenced datasets related to figures are visualized. © 2021 Ana Maria Roxana Petrescu et al

    Gridded fossil CO2 emissions and related O2 combustion consistent with national inventories 1959-2018

    Get PDF
    Quantification of CO2 fluxes at the Earth’s surface is required to evaluate the causes and drivers of observed increases in atmospheric CO2 concentrations. Atmospheric inversion models disaggregate observed variations in atmospheric CO2 concentration to variability in CO2 emissions and sinks. They require prior constraints fossil CO2 emissions. Here we describe GCP-GridFED (version 2019.1), a gridded fossil emissions dataset that is consistent with the national CO2 emissions reported by the Global Carbon Project (GCP). GCP-GridFEDv2019.1 provides monthly fossil CO2 emissions estimates for the period 1959-2018 at a spatial resolution of 0.1°. Estimates are provided separately for oil, coal and natural gas, for mixed international bunker fuels, and for the calcination of limestone during cement production. GCP-GridFED also includes gridded estimates of O2 uptake based on oxidative ratios for oil, coal and natural gas. It will be updated annually and made available for atmospheric inversions contributing to GCP global carbon budget assessments, thus aligning the prior constraints on top-down fossil CO2 emissions with the bottom-up estimates compiled by the GCP

    Inverse modelling of European CH4 emissions during 2006-2012 using different inverse models and reassessed atmospheric observations

    Get PDF
    We present inverse modelling (top down) estimates of European methane (CH4) emissions for 2006-2012 based on a new quality-controlled and harmonised in situ data set from 18 European atmospheric monitoring stations. We applied an ensemble of seven inverse models and performed four inversion experiments, investigating the impact of different sets of stations and the use of a priori information on emissions.The inverse models infer total CH4 emissions of 26.8 (20.2-29.7) TgCH(4) yr(-1) (mean, 10th and 90th percentiles from all inversions) for the EU-28 for 2006-2012 from the four inversion experiments. For comparison, total anthropogenic CH4 emissions reported to UNFCCC (bottom up, based on statistical data and emissions factors) amount to only 21.3 TgCH(4) yr(-1) (2006) to 18.8 TgCH(4) yr(-1) (2012). A potential explanation for the higher range of top-down estimates compared to bottom-up inventories could be the contribution from natural sources, such as peatlands, wetlands, and wet soils. Based on seven different wetland inventories from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP), total wetland emissions of 4.3 (2.3-8.2) TgCH(4) yr(-1) from the EU-28 are estimated. The hypothesis of significant natural emissions is supported by the finding that several inverse models yield significant seasonal cycles of derived CH4 emissions with maxima in summer, while anthropogenic CH4 emissions are assumed to have much lower seasonal variability. Taking into account the wetland emissions from the WETCHIMP ensemble, the top-down estimates are broadly consistent with the sum of anthropogenic and natural bottom-up inventories. However, the contribution of natural sources and their regional distribution remain rather uncertain.Furthermore, we investigate potential biases in the inverse models by comparison with regular aircraft profiles at four European sites and with vertical profiles obtained during the Infrastructure for Measurement of the European Carbon Cycle (IMECC) aircraft campaign. We present a novel approach to estimate the biases in the derived emissions, based on the comparison of simulated and measured enhancements of CH4 compared to the background, integrated over the entire boundary layer and over the lower troposphere. The estimated average regional biases range between -40 and 20% at the aircraft profile sites in France, Hungary and Poland.</p
    • 

    corecore