19 research outputs found

    Plasmodium knowlesi transmission:integrating quantitative approaches from epidemiology and ecology to understand malaria as a zoonosis

    Get PDF
    The public health threat posed by zoonotic Plasmodium knowlesi appears to be growing: it is increasingly reported across South East Asia, and is the leading cause of malaria in Malaysian Borneo. Plasmodium knowlesi threatens progress towards malaria elimination as aspects of its transmission, such as spillover from wildlife reservoirs and reliance on outdoor-biting vectors, may limit the effectiveness of conventional methods of malaria control. The development of new quantitative approaches that address the ecological complexity of P. knowlesi, particularly through a focus on its primary reservoir hosts, will be required to control it. Here, we review what is known about P. knowlesi transmission, identify key knowledge gaps in the context of current approaches to transmission modelling, and discuss the integration of these approaches with clinical parasitology and geostatistical analysis. We highlight the need to incorporate the influences of fine-scale spatial variation, rapid changes to the landscape, and reservoir population and transmission dynamics. The proposed integrated approach would address the unique challenges posed by malaria as a zoonosis, aid the identification of transmission hotspots, provide insight into the mechanistic links between incidence and land use change and support the design of appropriate interventions

    Cytogenetics of human malignant melanoma

    Full text link
    There has been a tremendous recent resurgence of interest in examining chromosomal abnormalities in human cancers (particularly solid tumors). This interest has been stimulated by the molecular examination of recurring chromosome abnormalities, and the recognition that they may pinpoint the location of growth regulatory sequences (e.g. cellular oncogenes). This finding coupled with the clear recognition that specific chromosome abnormalities can also have important diagnostic and prognostic implications, have caused this avenue of research to expand at a significant rate. The following brief review will summarize the current state of knowledge regarding recurring chromosome abnormalities in human malignant melanoma. A discussion of chromosome changes in pre-malignant skin lesions, primary melanoma, and metastatic melanoma is described. Brief descriptions of the potential clinical utility, and biologic relevance of chromosome abnormalities in this disorder are also discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44500/1/10555_2004_Article_BF00049408.pd

    PTEN/MMAC1 expression in melanoma resection specimens

    Get PDF
    PTEN/MMAC1, a tumour suppressor gene located on chromosome 10q23.3, has been found to be deleted in several types of human malignancies. As the chromosomal region 10q22-qter commonly is affected by losses in melanomas, we addressed this gene as tumour suppressor candidate in melanomas. Investigating PTEN/MMAC1 expression at mRNA level by semi-quantitative reverse transcription-polymerase chain reaction, we did not find a statistically significant down-regulation in melanoma resection specimens in comparison to acquired melanocytic nevi from which melanomas quite often are known to arise. Upon immunohistochemistry, PTEN/MMAC1 protein expression in melanomas was not lost. Sequencing the PTEN/MMAC1 cDNAs in 26 melanoma resection specimens (21 primary melanomas, five metastases), we detected three point mutations and two nucleotide deletions which did not represent genetic polymorphisms. With respect to the predicted protein sequences, all three point mutations were silent whereas the two frame shifts at the extreme C-terminus resulted in a loss of the putative PDZ-targeting consensus sequence. As loss of this motif possibly impairs localization and function of PTEN/MMAC1 in the two corresponding primary tumours, alterations of this tumour suppressor protein may participate in some melanomas

    Analysis of the 10q23 chromosomal region and the PTEN gene in human sporadic breast carcinoma

    Get PDF
    We examined a panel of sporadic breast carcinomas for loss of heterozygosity (LOH) in a 10-cM interval on chromosome 10 known to encompass the PTEN gene. We detected allele loss in 27 of 70 breast tumour DNAs. Fifteen of these showed loss limited to a subregion of the area studied. The most commonly deleted region was flanked by D10S215 and D10S541 and encompasses the PTEN locus. We used a combination of denaturing gradient gel electrophoresis and single-strand conformation polymorphism analyses to investigate the presence of PTEN mutations in tumours with LOH in this region. We did not detect mutations of PTEN in any of these tumours. Our data show that, in sporadic breast carcinoma, loss of heterozygosity of the PTEN locus is frequent, but mutation of PTEN is not. These results are consistent with loss of another unidentified tumour suppressor in this region in sporadic breast carcinoma. © 1999 Cancer Research Campaig
    corecore