87,784 research outputs found

    Properties of Phase transitions of a Higher Order

    Full text link
    The following is a thermodynamic analysis of a III order (and some aspects of a IV order) phase transition. Such a transition can occur in a superconductor if the normal state is a diamagnet. The equation for a phase boundary in an H-T (H is the magnetic field, T, the temperature) plane is derived. by considering two possible forms of the gradient energy, it is possible to construct a field theory which describes a III or a IV order transition and permits a study of thermal fluctuations and inhomogeneous order parameters.Comment: 13 pages, revtex, no figure

    D mesons and charmonium states in asymmetric nuclear matter at finite temperatures

    Full text link
    We investigate the in-medium masses of DD and Dˉ\bar{D} mesons in the isospin-asymmetric nuclear matter at finite temperatures arising due to the interactions with the nucleons, the scalar isoscalar meson σ\sigma, and the scalar iso-vector meson δ\delta within a SU(4) model. The in-medium masses of J/ψJ/\psi and the excited charmonium states (ψ(3686)\psi(3686) and ψ(3770)\psi(3770)) are also calculated in the hot isospin asymmetric nuclear matter in the present investigation. These mass modifications arise due to the interaction of the charmonium states with the gluon condensates of QCD, simulated by a scalar dilaton field introduced to incorporate the broken scale invariance of QCD within the effective chiral model. The change in the mass of J/ψJ/\psi in the nuclear matter with the density is seen to be rather small, as has been shown in the literature by using various approaches, whereas, the masses of the excited states of charmonium (ψ(3686)\psi(3686) and ψ(3770)\psi(3770)) are seen to have considerable drop at high densities. The present study of the in-medium masses of DD (Dˉ\bar{D}) mesons as well as of the charmonium states will be of relevance for the observables from the compressed baryonic matter, like the production and collective flow of the DD (Dˉ\bar D) mesons, resulting from the asymmetric heavy ion collision experiments planned at the future facility of the FAIR, GSI. The mass modifications of DD and Dˉ\bar{D} mesons as well as of the charmonium states in hot nuclear medium can modify the decay of the charmonium states (Ψ′,χc,J/Ψ\Psi^{'}, \chi_{c}, J/\Psi) to DDˉD\bar{D} pairs in the hot dense hadronic matter. The small attractive potentials observed for the Dˉ\bar{D} mesons may lead to formation of the Dˉ\bar{D} mesic nuclei.Comment: 61 pages, 19 figues, to be published in Phys. Rev.

    Differential rotation enhanced dissipation of tides in the PSR J0045-7319 Binary

    Full text link
    Recent observations of PSR J0045-7319, a radio pulsar in a close eccentric orbit with a massive B-star companion, indicate that the system's orbital period is decreasing on a timescale of ≈5×105\approx 5 \times10^{5} years, which is much shorter than the timescale of ≈\approx 10^9 years given by the standard theory of tidal dissipation in radiative stars. Observations also provide strong evidence that the B-star is rotating rapidly, perhaps at nearly its break up speed. We show that the dissipation of the dynamical tide in a star rotating in the same direction as the orbital motion of its companion (prograde rotation) with a speed greater than the orbital angular speed of the star at periastron results in an increase in the orbital period of the binary system with time. Thus, since the observed time derivative of the orbital period is large and negative, the B-star in the PSR J0045-7319 binary must have retrograde rotation if tidal effects are to account for the orbital decay. We also show that the time scale for the synchronization of the B-star's spin with the orbital angular speed of the star at periastron is comparable to the orbital evolution time. From the work of Goldreich and Nicholson (1989) we therefore expect that the B-star should be rotating differentially, with the outer layers rotating more slowly than the interior. We show that the dissipation of the dynamical tide in such a differentially rotating B-star is enhanced by almost three orders of magnitude leading to an orbital evolution time for the PSR J0045-7319 Binary that is consistent with the observations.Comment: 8 pages, tex. Submitted to Ap

    Giant Tunneling Magnetoresistance, Glassiness, and the Energy Landscape at Nanoscale Cluster Coexistence

    Full text link
    We present microscopic results on the giant tunneling magnetoresistance that arises from the nanoscale coexistence of ferromagnetic metallic (FMM) and antiferromagnetic insulating (AFI) clusters in a disordered two dimensional electron system with competing double exchange and superexchange interactions. Our Monte Carlo study allows us to map out the different field regimes in magnetotransport and correlate it with the evolution of spatial structures. At coexistence, the isotropic O(3) model shows signs of slow relaxation, and has a high density of low energy metastable states, but no genuine glassiness. However, in the presence of weak magnetic anisotropy, and below a field dependent irreversibility temperature TirrT_{irr}, the response on field cooling (FC) differs distinctly from that on zero field cooling (ZFC). We map out the phase diagram of this `phase coexistence glass', highlight how its response differs from that of a standard spin glass, and compare our results with data on the manganites.Comment: Final published versio
    • …
    corecore