1,726 research outputs found
Recommended from our members
A Neural Field Model of Word Repetition Effects in Early Time-Course ERPs inSpoken Word Perception
Previous attempts at modeling the neuro-cognitive mecha-nisms underlying word processing have used connectionist ap-proaches, but none has modeled spoken word architectures asthe input is presented in real-time. Hence, such models rely onthe ingenuity of the modeler to establish a mapping of real-time stimulus to the model’s input which may not preserveprocessing that happens during each time step. We present aneural field model which successfully replicates the effect ofimmediate auditory repetition of monosyllabic words and fitsit to a component of a well-studied mechanism for analyzinglanguage processing, the event-related potential (ERP). Thisrepresents a new modeling approach to studying the neuro-cognitive processes, one that is based on the bottom-up inter-action of real-time sensory information with higher-level cate-gories of cognitive processing
Metastable liquid lamellar structures in binary and ternary mixtures of Lennard-Jones fluids
We have carried out extensive equilibrium molecular dynamics (MD) simulations
to investigate the Liquid-Vapor coexistence in partially miscible binary and
ternary mixtures of Lennard-Jones (LJ) fluids. We have studied in detail the
time evolution of the density profiles and the interfacial properties in a
temperature region of the phase diagram where the condensed phase is demixed.
The composition of the mixtures are fixed, 50% for the binary mixture and
33.33% for the ternary mixture. The results of the simulations clearly indicate
that in the range of temperatures K, --in the scale of
argon-- the system evolves towards a metastable alternated liquid-liquid
lamellar state in coexistence with its vapor phase. These states can be
achieved if the initial configuration is fully disordered, that is, when the
particles of the fluids are randomly placed on the sites of an FCC crystal or
the system is completely mixed. As temperature decreases these states become
very well defined and more stables in time. We find that below K,
the alternated liquid-liquid lamellar state remains alive for 80 ns, in the
scale of argon, the longest simulation we have carried out. Nonetheless, we
believe that in this temperature region these states will be alive for even
much longer times.Comment: 18 Latex-RevTex pages including 12 encapsulated postscript figures.
Figures with better resolution available upon request. Accepted for
publication in Phys. Rev. E Dec. 1st issu
Long-Dose Intensive Therapy Is Necessary for Strong, Clinically Significant, Upper Limb Functional Gains and Retained Gains in Severe/Moderate Chronic Stroke
Background. Effective treatment methods are needed for moderate/severely impairment chronic stroke. Objective. The questions were the following: (1) Is there need for long-dose therapy or is there a mid-treatment plateau? (2) Are the observed gains from the prior-studied protocol retained after treatment? Methods. Single-blind, stratified/randomized design, with 3 applied technology treatment groups, combined with motor learning, for long-duration treatment (300 hours of treatment). Measures were Arm Motor Ability Test time and coordination-function (AMAT-T, AMAT-F, respectively), acquired pre-/posttreatment and 3-month follow-up (3moF/U); Fugl-Meyer (FM), acquired similarly with addition of mid-treatment. Findings. There was no group difference in treatment response (P ≥ .16), therefore data were combined for remaining analyses (n = 31; except for FM pre/mid/post, n = 36). Pre-to-Mid-treatment and Mid-to-Posttreatment gains of FM were statistically and clinically significant (P \u3c .0001; 4.7 points and P \u3c .001; 5.1 points, respectively), indicating no plateau at 150 hours and benefit of second half of treatment. From baseline to 3moF/U: (1) FM gains were twice the clinically significant benchmark, (2) AMAT-F gains were greater than clinically significant benchmark, and (3) there was statistically significant improvement in FM (P \u3c .0001); AMAT-F (P \u3c .0001); AMAT-T (P \u3c .0001). These gains indicate retained clinically and statistically significant gains at 3moFU. From posttreatment to 3moF/U, gains on FM were maintained. There were statistically significant gains in AMAT-F (P = .0379) and AMAT-T P = .003
Governance of Offshore IT Outsourcing at Shell Global Functions IT-BAM Development and Application of a Governance Framework to Improve Outsourcing Relationships
The lack of effective IT governance is widely recognized as a key inhibitor to successful global IT outsourcing relationships. In this study we present the development and application of a governance framework to improve outsourcing relationships. The approach used to developing an IT governance framework includes a meta model and a customization process to fit the framework to the target organization. The IT governance framework consists of four different elements (1) organisational structures, (2) joint processes between in- and outsourcer, (3) responsibilities that link roles to processes and (4) a diverse set of control indicators to measure the success of the relationship. The IT governance framework is put in practice in Shell GFIT BAM, a part of Shell that concluded to have a lack of management control over at least one of their outsourcing relationships. In a workshop the governance framework was used to perform a gap analysis between the current and desired governance. Several gaps were identified in the way roles and responsibilities are assigned and joint processes are set-up. Moreover, this workshop also showed the usefulness and usability of the IT governance framework in structuring, providing input and managing stakeholders in the discussions around IT governance
Development and Testing of The Gait Assessment and Intervention Tool (G.A.I.T.): A Measure of Coordinated Gait Components
Recent neuroscience methods have provided the basis upon which to develop effective gait training methods for recovery of the coordinated components of gait after neural injury. We determined that there was not an existing observational measure that was, at once, adequately comprehensive, scored in an objectively-based manner, and capable of assessing incremental improvements in the coordinated components of gait. Therefore, the purpose of this work was to use content valid procedures in order to develop a relatively inexpensive, more comprehensive measure, scored with an objectively-based system, capable of incrementally scoring improvements in given items, and that was both reliable and capable of discriminating treatment response for those who had a stroke. Eight neurorehabilitation specialists developed criteria for the gait measure, item content, and scoring method. In subjects following stroke (\u3e12 months), the new measure was tested for intra- and inter-rater reliability using the Intraclass Correlation Coefficient; capability to detect treatment response using Wilcoxon Signed Ranks Test; and discrimination between treatment groups, using the Plum Ordinal Regression. The Gait Assessment and Intervention Tool (G.A.I.T.) is a 31-item measure of the coordinated movement components of gait and associated gait deficits. It exhibited the following advantages: comprehensive, objective-based scoring method, incremental measurement of improvement within given items. The G.A.I.T. had good intra- and inter-rater reliability (ICC = .98, p = .0001, 95% CI = .95, .99; ICC = .83, p = .007, 95% CI = .32, .96, respectively. The inexperienced clinician who had training, had an inter-rater reliability with an experienced rater of ICC = .99 (p = .0001, CI = .97, .999). The G.A.I.T. detected improvement in response to gait training for two types of interventions: comprehensive gait training (z = −2.93, p = .003); and comprehensive gait training plus functional electrical stimulation (FES; z = −3.3, p = .001). The G.A.I.T. was capable of discriminating between two gait training interventions, showing an additive advantage of FES to otherwise comparable comprehensive gait training (parameter estimate = 1.72, p = .021; CI, .25, 3.1)
Development and Testing of The Gait Assessment and Intervention Tool (G.A.I.T.): A Measure of Coordinated Gait Components
Recent neuroscience methods have provided the basis upon which to develop effective gait training methods for recovery of the coordinated components of gait after neural injury. We determined that there was not an existing observational measure that was, at once, adequately comprehensive, scored in an objectively-based manner, and capable of assessing incremental improvements in the coordinated components of gait. Therefore, the purpose of this work was to use content valid procedures in order to develop a relatively inexpensive, more comprehensive measure, scored with an objectively-based system, capable of incrementally scoring improvements in given items, and that was both reliable and capable of discriminating treatment response for those who had a stroke. Eight neurorehabilitation specialists developed criteria for the gait measure, item content, and scoring method. In subjects following stroke (\u3e12 months), the new measure was tested for intra- and inter-rater reliability using the Intraclass Correlation Coefficient; capability to detect treatment response using Wilcoxon Signed Ranks Test; and discrimination between treatment groups, using the Plum Ordinal Regression. The Gait Assessment and Intervention Tool (G.A.I.T.) is a 31-item measure of the coordinated movement components of gait and associated gait deficits. It exhibited the following advantages: comprehensive, objective-based scoring method, incremental measurement of improvement within given items. The G.A.I.T. had good intra- and inter-rater reliability (ICC = .98, p = .0001, 95% CI = .95, .99; ICC = .83, p = .007, 95% CI = .32, .96, respectively. The inexperienced clinician who had training, had an inter-rater reliability with an experienced rater of ICC = .99 (p = .0001, CI = .97, .999). The G.A.I.T. detected improvement in response to gait training for two types of interventions: comprehensive gait training (z = −2.93, p = .003); and comprehensive gait training plus functional electrical stimulation (FES; z = −3.3, p = .001). The G.A.I.T. was capable of discriminating between two gait training interventions, showing an additive advantage of FES to otherwise comparable comprehensive gait training (parameter estimate = 1.72, p = .021; CI, .25, 3.1)
Capability of 2 Gait Measures for Detecting Response to Gait Training in Stroke Survivors: Gait Assessment and Intervention Tool and The Tinetti Gait Scale
Zimbelman J, Daly JJ, Roenigk KL, Butler K, Burdsall R, Holcomb JP. Capability of 2 gait measures for detecting response to gait training in stroke survivors: Gait Assessment and Intervention Tool and the Tinetti Gait Scale. Objective:To characterize the performance of 2 observational gait measures, the Tinetti Gait Scale (TGS) and the Gait Assessment and Intervention Tool (G.A.I.T.), in identifying improvement in gait in response to gait training. Design: In secondary analysis from a larger study of multimodal gait training for stroke survivors, we measured gait at pre-, mid-, and posttreatment according to G.A.I.T. and TGS, assessing their capability to capture recovery of coordinated gait components. Setting: Large medical center. Participants: Cohort of stroke survivors (N=44) greater than 6 months after stroke. Interventions: All subjects received 48 sessions of a multimodal gait-training protocol. Treatment consisted of 1.5 hours per session, 4 sessions per week for 12 weeks, receiving these 3 treatment aspects: (1) coordination exercise, (2) body weight–supported treadmill training, and (3) overground gait training, with 46% of subjects receiving functional electrical stimulation. Main Outcome Measures: All subjects were evaluated with the G.A.I.T. and TGS before and after completing the 48-session intervention. An additional evaluation was performed at midtreatment (after session 24). Results: For the total subject sample, there were significant pre-/post-, pre-/mid-, and mid-/posttreatment gains for both the G.A.I.T. and the TGS. According to the G.A.I.T., 40 subjects (91%) showed improved scores, 2 (4%) no change, and 2 (4%) a worsening score. According to the TGS, only 26 subjects (59%) showed improved scores, 16 (36%) no change, and 1 (2%) a worsening score. For 1 treatment group of chronic stroke survivors, the TGS failed to identify a significant treatment response to gait training, whereas the G.A.I.T. measure was successful. Conclusions: The G.A.I.T. is more sensitive than the TGS for individual patients and group treatment response in identifying recovery of volitional control of gait components in response to gait training
Recommended from our members
Materials Performance in USC Steam
The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C)
- …