3,915 research outputs found

    Symmetries in Fluctuations Far from Equilibrium

    Full text link
    Fluctuations arise universally in Nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. In order to sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation which links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager's reciprocity relations and Green-Kubo formulae. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields.Comment: 8 pages, 4 figure

    Reentrant Behavior of the Spinodal Curve in a Nonequilibrium Ferromagnet

    Full text link
    The metastable behavior of a kinetic Ising--like ferromagnetic model system in which a generic type of microscopic disorder induces nonequilibrium steady states is studied by computer simulation and a mean--field approach. We pay attention, in particular, to the spinodal curve or intrinsic coercive field that separates the metastable region from the unstable one. We find that, under strong nonequilibrium conditions, this exhibits reentrant behavior as a function of temperature. That is, metastability does not happen in this regime for both low and high temperatures, but instead emerges for intermediate temperature, as a consequence of the non-linear interplay between thermal and nonequilibrium fluctuations. We argue that this behavior, which is in contrast with equilibrium phenomenology and could occur in actual impure specimens, might be related to the presence of an effective multiplicative noise in the system.Comment: 7 pages, 4 figures; Final version to appear in Phys. Rev. E; Section V has been revise

    Spectral signatures of symmetry-breaking dynamical phase transitions

    Get PDF
    Large deviation theory provides the framework to study the probability of rare fluctuations of time-averaged observables, opening new avenues of research in nonequilibrium physics. One of the most appealing results within this context are dynamical phase transitions (DPTs), which might occur at the level of trajectories in order to maximize the probability of sustaining a rare event. While the Macroscopic Fluctuation Theory has underpinned much recent progress on the understanding of symmetry-breaking DPTs in driven diffusive systems, their microscopic characterization is still challenging. In this work we shed light on the general spectral mechanism giving rise to continuous DPTs not only for driven diffusive systems, but for any jump process in which a discrete Zn\mathbb{Z}_n symmetry is broken. By means of a symmetry-aided spectral analysis of the Doob-transformed dynamics, we provide the conditions whereby symmetry-breaking DPTs might emerge and how the different dynamical phases arise from the specific structure of the degenerate eigenvectors. We show explicitly how all symmetry-breaking features are encoded in the subleading eigenvectors of the degenerate manifold. Moreover, by partitioning configuration space into equivalence classes according to a proper order parameter, we achieve a substantial dimensional reduction which allows for the quantitative characterization of the spectral fingerprints of DPTs. We illustrate our predictions in three paradigmatic many-body systems: (i) the 1D boundary-driven weakly asymmetric exclusion process (WASEP), which exhibits a particle-hole symmetry-breaking DPT for current fluctuations, (ii) the 33 and 44-state Potts model, which displays discrete rotational symmetry-breaking DPT for energy fluctuations, and (iii) the closed WASEP which presents a continuous symmetry-breaking DPT to a time-crystal phase characterized by a rotating condensate

    Reply to comment on "Simple one-dimensional model of heat conduction which obeys Fourier's law"

    Full text link
    In this reply we answer the comment by A. Dhar (cond-mat/0203077) on our Letter "Simple one dimensional model of heat conduction which obeys Fourier's law" (Phys. Rev. Lett. 86, 5486 (2001), cond-mat/0104453)Comment: 1 pag., 1 fi
    • …
    corecore