29 research outputs found

    Magnetic phase diagram and transport properties of FeGe_2

    Full text link
    We have used resistivity measurements to study the magnetic phase diagram of the itinerant antiferromagnet FeGe_2 in the temperature range from 0.3->300 K in magnetic fields up to 16 T. In contrast to theoretical predictions, the incommensurate spin density wave phase is found to be stable at least up to 16 T, with an estimated critical field \mu _0H_c of ~ 30 T. We have also studied the low temperature magnetoresistance in the [100], [110], and [001] directions. The transverse magnetoresistance is well described by a power law for magnetic fields above 1 T with no saturation observed at high fields. We discuss our results in terms of the magnetic structure and the calculated electronic bandstructure of FeGe_2. We have also observed, for the first time in this compound, Shubnikov-de Haas oscillations in the transverse magnetoresistance with a frequency of 190 +- 10 T for a magnetic field along [001].Comment: 13 pages, RevTeX, 7 postscript figures, to appear in Journal of Physics: Condensed Matte

    Dissipative Van der Waals interaction between a small particle and a metal surface

    Full text link
    We use a general theory of the fluctuating electromagnetic field to calculate the friction force acting on a small neutral particle, e.g., a physisorbed molecule, or a nanoscale object with arbitrary dispersive and absorptive dielectric properties, moving near a metal surface. We consider the dependence of the electromagnetic friction on the temperature TT, the separation dd, and discuss the role of screening, non-local and retardation effects. We find that for high resistivity materials, the dissipative van der Waals interaction can be an important mechanism of vibrational energy relaxation of physisorbed molecules, and friction for microscopic solids. Several controversial topics related to electromagnetic dissipative shear stress is considered. The problem of local heating of the surface by an STM tip is also briefly commented on.Comment: 11 pages, No figure

    Electromagnetic field correlations near a surface with a nonlocal optical response

    Full text link
    The coherence length of the thermal electromagnetic field near a planar surface has a minimum value related to the nonlocal dielectric response of the material. We perform two model calculations of the electric energy density and the field's degree of spatial coherence. Above a polar crystal, the lattice constant gives the minimum coherence length. It also gives the upper limit to the near field energy density, cutting off its 1/z31/z^3 divergence. Near an electron plasma described by the semiclassical Lindhard dielectric function, the corresponding length scale is fixed by plasma screening to the Thomas-Fermi length. The electron mean free path, however, sets a larger scale where significant deviations from the local description are visible.Comment: 15 pages, 7 figure files (.eps), \documentclass[global]{svjour}, accepted in special issue "Optics on the Nanoscale" (Applied Physics B, eds. V. Shalaev and F. Tr\"ager

    Radiative cooling of nanoparticles close to a surface

    No full text
    We study the radiative cooling of polar and metallic nanoparticles immersed in a thermal bath close to a partially reflecting surface. The dynamics of relaxation is investigated at different distances from the surface, i.e., in the near-field and far-field zones. We demonstrate the existence of an oscillating behavior for the thermal relaxation time with respect to the separation distance from the surface, an analog of Friedel oscillations in Fermi liquids
    corecore