1,241,495 research outputs found

    High Dielectric Permittivity in AFe1/2_{1 / 2}B1/2_{1 / 2}O3_{3} Nonferroelectric Perovskite Ceramics (A - Ba, Sr, Ca; B - Nb, Ta, Sb)

    Full text link
    AFe1/2_{1 / 2}B1/2_{1 / 2}O3_{3}(A- Ba, Sr, Ca; B-Nb, Ta, Sb) ceramics were synthesized and temperature dependencies of the dielectric permittivity were measured at different frequencies. The experimental data obtained show very high values of the dielectric permittivity in a wide temperature interval that is inherent to so-called high-k materials. The analyses of these data establish a Maxwell-Wagner mechanism as a main source for the phenomenon observed.Comment: 6 pages, 7 figure

    Comment on "Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains"

    Full text link
    Dukelsky, Mart\'in-Delgado, Nishino and Sierra (Europhys. Lett., 43, 457 (1998) - hereafter referred to as DMNS) investigated the matrix product method (MPM), comparing it with the infinite-size density matrix renormalization group (DMRG). For equivalent basis size, the MPM produces an improved variational energy over that produced by DMRG and, unlike DMRG, produces a translationally-invariant wavefunction. The DMRG results presented were significantly worse than the MPM, caused by a shallow bound state appearing at the join of the two DMRG blocks. They also suggested that the DMRG results can be improved by using an alternate superblock construction [B][B][B] \bullet [B] for the last few steps of the calculation. In this comment, we show that the DMRG results presented by DMNS are in error and the artificial bound state produced by the standard superblock configuration is very small even for m=2m=2 states kept. In addition, we calculate explicitly the energy and wavefunction for the [B][B][B] \bullet [B] superblock structure and verify that the energy coincides with that of the MPM, as conjectured by S. Ostlund and S. Rommer (Phys. Rev. Lett., 75, 3537 (1995)).Comment: 2 pages, 1 eps figure included. eps.cls include

    Z_p scalar dark matter from multi-Higgs-doublet models

    Full text link
    In many models, stability of dark matter particles is protected by a conserved Z_2 quantum number. However dark matter can be stabilized by other discrete symmetry groups, and examples of such models with custom-tailored field content have been proposed. Here we show that electroweak symmetry breaking models with N Higgs doublets can readily accommodate scalar dark matter candidates stabilized by groups Z_p with any p2N1p \le 2^{N-1}, leading to a variety of kinds of microscopic dynamics in the dark sector. We give examples in which semi-annihilation or multiple semi-annihilation processes are allowed or forbidden, which can be especially interesting in the case of asymmetric dark matter.Comment: 10 page

    Ground-state properties of fermionic mixtures with mass imbalance in optical lattices

    Full text link
    Ground-state properties of fermionic mixtures confined in a one-dimensional optical lattice are studied numerically within the spinless Falicov-Kimball model with a harmonic trap. A number of remarkable results are found. (i) At low particle filling the system exhibits the phase separation with heavy atoms in the center of the trap and light atoms in the surrounding regions. (ii) Mott-insulating phases always coexist with metallic phases. (iii) Atomic-density waves are observed in the insulating regions for all particle fillings near half-filled lattice case. (iv) The variance of the local density exhibits the universal behavior (independent of the particle filling, the Coulomb interaction and the strength of a confining potential) over the whole region of the local density values.Comment: 10 pages, 5 figure

    Jet Physics in Heavy Ion Collisions with Compact Muon Solenoid detector at the LHC

    Full text link
    The status of CMS jet simulations and physics analysis in heavy ion collisions is presented. Jet reconstruction and high transverse momentum particle tracking in the high multiplicity environment of heavy ion collisions at the LHC using the CMS calorimetry and tracking system are described. The Monte Carlo tools used to simulate jet quenching are discussed.Comment: Talk given at 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma, Salt Lake City, Kolkata, India, February 8-12, 2005; 4 pages including 4 figures as EPS-files; prepared using LaTeX package for Journal of Physics

    Simulation of jet quenching at RHIC and LHC

    Get PDF
    The model to simulate jet quenching effect in ultrarelativistic heavy ion collisions is presented. The model is the fast Monte-Carlo tool implemented to modify a standard PYTHIA jet event. The model has been generalized to the case of the "full" heavy ion event (the superposition of soft, hydro-type state and hard multi-jets) using a simple and fast simulation procedure for soft particle production. The model is capable of reproducing main features of the jet quenching pattern at RHIC and is applyed to analyze novel jet quenching features at LHC.Comment: Talk given at 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions "Quark Matter 2006" (Shanghai, China, November 14-20, 2006); 4 pages including 2 figures as EPS-files; prepared using LaTeX package for Journal of Physics

    Tree-level metastability bounds for the most general two Higgs doublet model

    Full text link
    Within two Higgs doublet models, it is possible that the current vacuum is not the global minimum, in which case it could possibly decay at a later stage. We discuss the tree-level conditions which must be obeyed by the most general scalar potential in order to preclude that possibility. We propose a new procedure which is not only more general but also easier to implement than the previously published one, including CP conserving as well as CP violating scalar sectors. We illustrate these conditions within the context of the Z2 model, softly broken by a complex, CP violating parameter.Comment: RevTex, 13 pages, 3 figure

    Markovian embedding of fractional superdiffusion

    Full text link
    The Fractional Langevin Equation (FLE) describes a non-Markovian Generalized Brownian Motion with long time persistence (superdiffusion), or anti-persistence (subdiffusion) of both velocity-velocity correlations, and position increments. It presents a case of the Generalized Langevin Equation (GLE) with a singular power law memory kernel. We propose and numerically realize a numerically efficient and reliable Markovian embedding of this superdiffusive GLE, which accurately approximates the FLE over many, about r=N lg b-2, time decades, where N denotes the number of exponentials used to approximate the power law kernel, and b>1 is a scaling parameter for the hierarchy of relaxation constants leading to this power law. Besides its relation to the FLE, our approach presents an independent and very flexible route to model anomalous diffusion. Studying such a superdiffusion in tilted washboard potentials, we demonstrate the phenomenon of transient hyperdiffusion which emerges due to transient kinetic heating effects.Comment: EPL, in pres
    corecore