3,402 research outputs found
Sequential modular position and momentum measurements of a trapped ion mechanical oscillator
The non-commutativity of position and momentum observables is a hallmark
feature of quantum physics. However this incompatibility does not extend to
observables which are periodic in these base variables. Such modular-variable
observables have been suggested as tools for fault-tolerant quantum computing
and enhanced quantum sensing. Here we implement sequential measurements of
modular variables in the oscillatory motion of a single trapped ion, using
state-dependent displacements and a heralded non-destructive readout. We
investigate the commutative nature of modular variable observables by
demonstrating no-signaling-in-time between successive measurements, using a
variety of input states. In the presence of quantum interference, which we
enhance using squeezed input states, measurements of different periodicity show
signaling-in-time. The sequential measurements allow us to extract two-time
correlators for modular variables, which we use to violate a Leggett-Garg
inequality. The experiments involve control and coherence of multi-component
superpositions of up to 8 coherent, squeezed or Fock state wave-packets.
Signaling-in-time as well as Leggett-Garg inequalities serve as efficient
quantum witnesses which we probe here with a mechanical oscillator, a system
which has a natural crossover from the quantum to the classical regime.Comment: 6 pages, 3 figures and supplemental informatio
Scalable arrays of micro-Penning traps for quantum computing and simulation
We propose the use of 2-dimensional Penning trap arrays as a scalable
platform for quantum simulation and quantum computing with trapped atomic ions.
This approach involves placing arrays of micro-structured electrodes defining
static electric quadrupole sites in a magnetic field, with single ions trapped
at each site and coupled to neighbors via the Coulomb interaction. We solve for
the normal modes of ion motion in such arrays, and derive a generalized
multi-ion invariance theorem for stable motion even in the presence of trap
imperfections. We use these techniques to investigate the feasibility of
quantum simulation and quantum computation in fixed ion lattices. In
homogeneous arrays, we show that sufficiently dense arrays are achievable, with
axial, magnetron and cyclotron motions exhibiting inter-ion dipolar coupling
with rates significantly higher than expected decoherence. With the addition of
laser fields these can realize tunable-range interacting spin Hamiltonians. We
also show how local control of potentials allows isolation of small numbers of
ions in a fixed array and can be used to implement high fidelity gates. The use
of static trapping fields means that our approach is not limited by power
requirements as system size increases, removing a major challenge for scaling
which is present in standard radio-frequency traps. Thus the architecture and
methods provided here appear to open a path for trapped-ion quantum computing
to reach fault-tolerant scale devices.Comment: 21 pages, 10 figures Changes include adding section IX
(Implementation Example) and substantially rewriting section X (Scaling
Pulsed force sequences for fast phase-insensitive quantum gates in trapped ions
We show how to create quantum gates of arbitrary speed between trapped ions,
using a laser walking wave, with complete insensitivity to drift of the optical
phase, and requiring cooling only to the Lamb-Dicke regime. We present pulse
sequences that satisfy the requirements and are easy to produce in the
laboratory.Comment: 11 pages, 3 figure
A review of knowledge: inter-row hoeing & its associated agronomy in organic cereal & pulse crops
The aim of this project was to establish the “state of the art” for inter-row hoeing and its associated agronomic practices in organic cereal and pulse crops. To achieve this a detailed review of literature was undertaken.
• To facilitate inter-row cultivation in cereal and pulse crops, some adjustment of row spacing may be required. For cereals, drilling crops in 25 cm rows can reduce yield compared with normal drilling practice, primarily due to greater intra-specific competition amongst the crop (i.e. competition between crop plants).
• The yield penalty resulting from widely spaced crop rows can be minimised using a number of approaches, depending on the drill:
1. Reducing the seed rate in widely spaced crop rows can help to minimise excessive intra-specific competition.
2. Band sowing the crop in wide rows can also help to minimise intra-specific competition as the seed is distributed over a greater area.
3. Using a twin-row arrangement can completely overcome the yield penalty.
• The recommended row spacing for peas (up to 20 cm) and beans (up to 35 cm) does not require any further adjustment for inter-row hoeing.
• Recent developments in automated guidance of inter-row hoeing equipment mean that weeding operations can now be conducted a much higher speeds (10 km h-1). This has highlighted the limitations of some of the cultivators currently used (e.g. ‘A’ blades), as excessive soil throw can occur at this high speed. Rolling cultivators may prove to be the most suitable at high forward speeds. For manually guided hoes working at slower speeds (5 km h-1), ‘A’ and ‘L’ blades offer an effective low cost solution.
• In terms of the timing of inter-row hoeing, it is suggested that weeding operations should be conducted at an early stage in the growing season, as the weeds that emerge with or shortly after the crop are the ones that pose the most significant threat for crop yield. Weeding on two occasions can provide better levels of weed control than weeding once, but weeding more frequently offered little additional benefit. Reductions of weed biomass of up to 99 % have been reported as a result of inter-row hoeing, although this has not always resulted in a positive crop yield response. This is probably due to crop damage resulting from inaccurate hoeing, a problem that can be overcome with automated guidance.
• There is some evidence to suggest that mechanical weeding operations can mineralise soil bound nitrogen.
• The impact of inter-row hoeing on ground nesting birds is uncertain. Early indications suggest that skylarks prefer to nest directly adjacent to or in the crop row rather than between rows.
The information contained within this review should enable farmers to make best use of inter-row hoeing in their arable crops.
There are a number of areas that require further research and development:
• The interaction of seed rate and row spacing needs to be confirmed in organic systems.
• Relatively little is known about the mechanisms of weed kill and the detailed interaction between the cultivator blade, the weed and the soil. This is particularly important with the new automated guidance equipment that allows weeding at high forward speeds.
• The timing and frequency of inter-row hoeing has received very little attention. The optimum weed control timings are based on small-plot crop:weed competition studies and need to be verified under field scale management with inter-row hoeing equipment.
• Finally, the impact of inter-row hoeing and widely spaced crop rows on ground-nesting birds has not been looked at directly, but is of importance.
Please see the main report for a more detailed summary before the full text
Quantum control of the motional states of trapped ions through fast switching of trapping potentials
We propose a new scheme for supplying voltages to the electrodes of
microfabricated ion traps, enabling access to a regime in which changes to the
trapping potential are made on timescales much shorter than the period of the
secular oscillation frequencies of the trapped ions. This opens up
possibilities for speeding up the transport of ions in segmented ion traps and
also provides access to control of multiple ions in a string faster than the
Coulomb interaction between them. We perform a theoretical study of ion
transport using these methods in a surface-electrode trap, characterizing the
precision required for a number of important control parameters. We also
consider the possibilities and limitations for generating motional state
squeezing using these techniques, which could be used as a basis for
investigations of Gaussian-state entanglement.Comment: Accepted by New Journal of Physic
Energy distribution of charged dilaton black holes
Chamorro and Virbhadra studied, using the energy-momentum complex of
Einstein, the energy distribution associated with static spherically symmetric
charged dilaton black holes for an arbitrary value of the coupling parameter
which controls the strength of the dilaton to the Maxwell field. We
study the same in Tolman's prescription and get the same result as obtained by
Chamorro and Virbhadra. The energy distribution of charged dilaton black holes
depends on the value of and the total energy is independent of this
parameter.Comment: 8 pages, RevTex, no figure
A proposal for a scalable universal bosonic simulator using individually trapped ions
We describe a possible architecture to implement a universal bosonic
simulator (UBS) using trapped ions. Single ions are confined in individual
traps, and their motional states represent the bosonic modes. Single-mode
linear operators, nonlinear phase-shifts, and linear beam splitters can be
realized by precisely controlling the trapping potentials. All the processes in
a bosonic simulation, except the initialization and the readout, can be
conducted beyond the Lamb-Dicke regime. Aspects of our proposal can also be
applied to split adiabatically a pair of ions in a single trap
- …