47 research outputs found

    The emerging roles of deubiquitylating enzymes (DUBs) in the TGFβ and BMP pathways

    Get PDF
    The members of the transforming growth factor beta (TGFß) family of cytokines, including bone morphogenetic proteins (BMP), play fundamental roles in development and tissue homeostasis. Hence, aberrant TGFß/BMP signalling is associated with several human diseases such as fibrosis, bone and immune disorders, cancer progression and metastasis. Consequently, targeting TGFß signalling for intervention potentially offers therapeutic opportunities against these diseases. Many investigations have focussed on understanding the molecular mechanisms underpinning the regulation of TGFß signalling. One of the key areas has been to investigate the regulation of the protein components of the TGFß/BMP signal transduction pathways by ubiquitylation and deubiquitylation. In the last 15years, extensive research has led to the discovery and characterisation of several E3 ubiquitin ligases that influence the TGFß pathway. However, the research on DUBs regulating the TGFß pathway has received prominence only recently and is still an emerging field. This review will provide a concise summary of our current understanding of how DUBs regulate TGFß signalling

    Protein associated with SMAD1 (PAWS1/FAM83G) is a substrate for type I bone morphogenetic protein receptors and modulates bone morphogenetic protein signalling

    Get PDF
    Bone morphogenetic proteins (BMPs) control multiple cellular processes in embryos and adult tissues. BMPs signal through the activation of type I BMP receptor kinases, which then phosphorylate SMADs 1/5/8. In the canonical pathway, this triggers the association of these SMADs with SMAD4 and their translocation to the nucleus, where they regulate gene expression. BMPs can also signal independently of SMAD4, but this pathway is poorly understood. Here, we report the discovery and characterization of PAWS1/FAM83G as a novel SMAD1 interactor. PAWS1 forms a complex with SMAD1 in a SMAD4-independent manner, and BMP signalling induces the phosphorylation of PAWS1 through BMPR1A. The phosphorylation of PAWS1 in response to BMP is essential for activation of the SMAD4-independent BMP target genes NEDD9 and ASNS. Our findings identify PAWS1 as the first non-SMAD substrate for type I BMP receptor kinases and as a novel player in the BMP pathway. We also demonstrate that PAWS1 regulates the expression of several non-BMP target genes, suggesting roles for PAWS1 beyond the BMP pathway

    USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling

    Get PDF
    Protein kinase ALK3/BMPR1A mediates bone morphogenetic protein (BMP) signalling through phosphorylation and activation of SMADs 1/5/8. SMAD6, a transcriptional target of BMP, negatively regulates the BMP pathway by recruiting E3 ubiquitin ligases and targeting ALK3 for ubiquitin-mediated degradation. Here, we identify a deubiquitylating enzyme USP15 as an interactor of SMAD6 and ALK3. We show that USP15 enhances BMP-induced phosphorylation of SMAD1 by interacting with and deubiquitylating ALK3. RNAi-mediated depletion of USP15 increases ALK3 K48-linked polyubiquitylation, and reduces both BMP-induced SMAD1 phosphorylation and transcription of BMP target genes. We also show that loss of USP15 expression from mouse myoblast cells inhibits BMP-induced osteoblast differentiation. Furthermore, USP15 modulates BMP-induced phosphorylation of SMAD1 and transcription during Xenopus embryogenesis

    Rapid generation of endogenously driven transcriptional reporters in cells through CRISPR/Cas9

    Get PDF
    CRISPR/Cas9 technologies have been employed for genome editing to achieve gene knockouts and knock-ins in somatic cells. Similarly, certain endogenous genes have been tagged with fluorescent proteins. Often, the detection of tagged proteins requires high expression and sophisticated tools such as confocal microscopy and flow cytometry. Therefore, a simple, sensitive and robust transcriptional reporter system driven by endogenous promoter for studies into transcriptional regulation is desirable. We report a CRISPR/Cas9-based methodology for rapidly integrating a firefly luciferase gene in somatic cells under the control of endogenous promoter, using the TGFβ-responsive gene PAI-1. Our strategy employed a polycistronic cassette containing a non-fused GFP protein to ensure the detection of transgene delivery and rapid isolation of positive clones. We demonstrate that firefly luciferase cDNA can be efficiently delivered downstream of the promoter of the TGFβ-responsive gene PAI-1. Using chemical and genetic regulators of TGFβ signalling, we show that it mimics the transcriptional regulation of endogenous PAI-1 expression. Our unique approach has the potential to expedite studies on transcription of any gene in the context of its native chromatin landscape in somatic cells, allowing for robust high-throughput chemical and genetic screens

    Conditioning with fludarabine and treosulfan compared to FLAMSA-RIC in allogeneic stem cell transplantation for myeloid malignancies: a retrospective single-center analysis

    Get PDF
    Reduced intensity conditioning (RIC) and reduced toxicity conditioning (RTC) regimens enable allogeneic hematopoietic stem cell transplantation (alloSCT) to more patients due to reduction in transplant-related mortality (TRM). The conditioning regimens with fludarabine and treosulfan (Flu/Treo) or fludarabine, amsacrine, cytarabine (FLAMSA)-RIC have shown their efficacy and tolerability in various malignancies. So far, no prospective study comparing the two regimens is available. Two studies compared the regimens retrospectively, in which both provided similar outcome. In this retrospective, single-center analysis, these two regimens were compared with regard to outcome, rate of acute and chronic graft versus host disease (GvHD), and engraftment. 113 consecutive patients with myeloid malignancies who received Flu/Treo or FLAMSA-RIC conditioning prior to alloSCT between 2007 and 2019 were included. Except for age, previous therapies, and remission status before alloSCT, patient characteristics were well balanced. The median follow-up time within this analysis was 44 months. There was no significant difference in absolute neutrophil count (ANC) or platelet engraftment between the two conditioning regimens. Overall survival (OS), the relapse-free survival (RFS), and the TRM were not significantly different between the two cohorts. The rate of GvHD did not differ between the two groups. In summary, this retrospective analysis shows that there is no major difference regarding tolerability and survival between the Flu/Treo and FLAMSA-RIC regimens. Despite several limitations due to uneven distribution concerning age and remission status, we demonstrate that Flu/Treo and FLAMSA-RIC provide similar outcomes and are feasible in older and intensively pre-treated patients

    Regulation of the transforming growth factor β pathway by reversible ubiquitylation

    Get PDF
    The transforming growth factor β (TGFβ) signalling pathway plays a central role during embryonic development and in adult tissue homeostasis. It regulates gene transcription through a signalling cascade from cell surface receptors to intracellular SMAD transcription factors and their nuclear cofactors. The extent, duration and potency of signalling in response to TGFβ cytokines are intricately regulated by complex biochemical processes. The corruption of these regulatory processes results in aberrant TGFβ signalling and leads to numerous human diseases, including cancer. Reversible ubiquitylation of pathway components is a key regulatory process that plays a critical role in ensuring a balanced response to TGFβ signals. Many studies have investigated the mechanisms by which various E3 ubiquitin ligases regulate the turnover and activity of TGFβ pathway components by ubiquitylation. Moreover, recent studies have shed new light into their regulation by deubiquitylating enzymes. In this report, we provide an overview of current understanding of the regulation of TGFβ signalling by E3 ubiquitin ligases and deubiquitylases

    USP11 augments TGFβ signaling by deubiquitylating ALK5

    Get PDF
    The TGFβ receptors signal through phosphorylation and nuclear translocation of SMAD2/3. SMAD7, a transcriptional target of TGFβ signals, negatively regulates the TGFβ pathway by recruiting E3 ubiquitin ligases and targeting TGFβ receptors for ubiquitin-mediated degradation. In this report, we identify a deubiquitylating enzyme USP11 as an interactor of SMAD7. USP11 enhances TGFβ signalling and can override the negative effects of SMAD7. USP11 interacts with and deubiquitylates the type I TGFβ receptor (ALK5), resulting in enhanced TGFβ-induced gene transcription. The deubiquitylase activity of USP11 is required to enhance TGFβ-induced gene transcription. RNAi-mediated depletion of USP11 results in inhibition of TGFβ-induced SMAD2/3 phosphorylation and TGFβ-mediated transcriptional responses. Central to TGFβ pathway signalling in early embryogenesis and carcinogenesis is TGFβ-induced epithelial to mesenchymal transition. USP11 depletion results in inhibition of TGFβ-induced epithelial to mesenchymal transition

    Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at Ser<sup>16 </sup>to trigger its nuclear localization

    No full text
    The deubiquitylating enzyme OTUB1 is present in all tissues and targets a multitude of substrates, both in the cytosol and nucleus. Here, we found that the phosphorylation of OTUB1 at Ser(16) and its subsequent nuclear accumulation is mediated by casein kinase 2 (CK2). Whereas unphosphorylated OTUB1 was detected mainly in the cytosol, Ser(16)-phosphorylated OTUB1 was detected only in the nucleus. Pharmacological inhibition or genetic ablation of CK2 blocked the phosphorylation of OTUB1 at Ser(16) and its nuclear localization in various cells. The phosphorylation of OTUB1 at Ser(16) did not alter its catalytic activity in vitro, its ability to bind K63-linked ubiquitin chains in vitro and its ability to interact with the E2 enzyme UBE2N in vitro. The phosphorylation at Ser(16) and subsequent nuclear localization of OTUB1 was essential for cells to repair ionizing radiation-induced DNA damage in osteosarcoma U2OS cells
    corecore