102 research outputs found

    Phonon-induced quadrupolar ordering of the magnetic superconductor TmNi2_2B2_2C

    Get PDF
    We present synchrotron x-ray diffraction studies revealing that the lattice of thulium borocarbide is distorted below T_Q = 13.5 K at zero field. T_Q increases and the amplitude of the displacements is drastically enhanced, by a factor of 10 at 60 kOe, when a magnetic field is applied along [100]. The distortion occurs at the same wave vector as the antiferromagnetic ordering induced by the a-axis field. A model is presented that accounts for the properties of the quadrupolar phase and explains the peculiar behavior of the antiferromagnetic ordering previously observed in this compound.Comment: submitted to PR

    Theory of the Eigler-swith

    Full text link
    We suggest a simple model to describe the reversible field-induced transfer of a single Xe-atom in a scanning tunneling microscope, --- the Eigler-switch. The inelasticly tunneling electrons give rise to fluctuating forces on and damping of the Xe-atom resulting in an effective current dependent temperature. The rate of transfer is controlled by the well-known Arrhenius law with this effective temperature. The directionality of atom transfer is discussed, and the importance of use of non-equlibrium-formalism for the electronic environment is emphasized. The theory constitutes a formal derivation and generalization of the so-called Desorption Induced by Multiple Electron Transitions (DIMET) point of view.Comment: 13 pages (including 2 figures in separate LaTeX-files with ps-\specials), REVTEX 3.

    The magnetic neutron scattering resonance of high-T_c superconductors in external magnetic fields: an SO(5) study

    Get PDF
    The magnetic resonance at 41 meV observed in neutron scattering studies of Y Ba_2 Cu_3 O_7 holds a key position in the understanding of high-T_c superconductivity. Within the SO(5) model for superconductivity and antiferromagnetism, we have calculated the effect of an applied magnetic field on the neutron scattering cross-section of the magnetic resonance. In the presence of vortices, the neutron scattering cross-section shows clear signatures of not only the fluctuations in the superconducting order parameter \psi, but also the modulation of the phase of \psi due to vortices. In reciprocal space we find that i) the scattering amplitude is zero at (pi/a,pi/a), ii) the resonance peak is split into a ring with radius pi/d centered at (pi/a,pi/a), d being the vortex lattice constant, and consequently, iii) the splitting pi/d scales with the magnetic field as sqrt{B}.Comment: 4 pages including 3 eps-figures - minor changes and one reference added. Accepted for publication in Phys. Rev.

    Three-Body and One-Body Channels of the Auger Core-Valence-Valence decay: Simplified Approach

    Full text link
    We propose a computationally simple model of Auger and APECS line shapes from open-band solids. Part of the intensity comes from the decay of unscreened core-holes and is obtained by the two-body Green's function Gω(2)G^{(2)}_{\omega}, as in the case of filled bands. The rest of the intensity arises from screened core-holes and is derived using a variational description of the relaxed ground state; this involves the two-holes-one-electron propagator GωG_{\omega}, which also contains one-hole contributions. For many transition metals, the two-hole Green's function Gω(2)G^{(2)}_{\omega} can be well described by the Ladder Approximation, but the three-body Green's function poses serious further problems. To calculate GωG_{\omega}, treating electrons and holes on equal footing, we propose a practical approach to sum the series to all orders. We achieve that by formally rewriting the problem in terms of a fictitious three-body interaction. Our method grants non-negative densities of states, explains the apparent negative-U behavior of the spectra of early transition metals and interpolates well between weak and strong coupling, as we demonstrate by test model calculations.Comment: AMS-LaTeX file, 23 pages, 8 eps and 3 ps figures embedded in the text with epsfig.sty and float.sty, submitted to Phys. Rev.

    Solution of the Boltzmann equation in a random magnetic field

    Full text link
    A general framework for solving the Boltzmann equation for a 2-dimensional electron gas (2DEG) in random magnetic fields is presented, when the random fields are included in the driving force. The formalism is applied to some recent experiments, and a possible extension to composite fermions at ν=1/2\nu=1/2 is discussed.Comment: 15 pages, Revtex 3.0. The 5 postscript figures can be obtained from our WWW-server: http://roemer.fys.ku.dk/randbolt.htm , or on request from the author

    Excitations in antiferromagnetic cores of superconducting vortices

    Full text link
    We study excitations of the predicted antiferromagnetically ordered vortex cores in the superconducting phase of the newly proposed SO(5) model of strongly correlated electrons. Using experimental data from the literature we show that the susceptibilities in the spin sector and the charge sector are nearly equal, and likewise for the stiffnesses. In the case of strict equality SO(5) symmetry is possible, and we find that if present the vortices give rise to an enhanced neutron scattering cross section near the so called pi resonance at 41 meV. In the case of broken SO(5) symmetry two effects are predicted. Bound excitations can exist in the vortex cores with ``high'' excitation energies slightly below 41 meV, and the massless Goldstone modes corresponding to the antiferromagnetic ordering of the core can acquire a mass and show up as core excitation with ``low'' excitation energies around 2 meV.Comment: 9 pages, RevTeX, including 3 postscript figures, submitted to Phys. Rev. B, July 10, 199

    SO(5) theory of insulating vortex cores in high-TcT_c materials

    Full text link
    We study the fermionic states of the antiferromagnetically ordered vortex cores predicted to exist in the superconducting phase of the newly proposed SO(5) model of strongly correlated electrons. Our model calculation gives a natural explanation of the recent STM measurements on BSCCO, which in surprising contrast to YBCO revealed completely insulating vortex cores.Comment: 4 pages, 1 figur

    Effect of Finite Impurity Mass on the Anderson Orthogonality Catastrophe in One Dimension

    Full text link
    A one-dimensional tight-binding Hamiltonian describes the evolution of a single impurity interacting locally with NN electrons. The impurity spectral function has a power-law singularity A(ω)ωω01+βA(\omega)\propto\mid\omega-\omega_0\mid^{-1+\beta} with the same exponent β\beta that characterizes the logarithmic decay of the quasiparticle weight ZZ with the number of electrons NN, ZNβZ\propto N^{-\beta}. The exponent β\beta is computed by (1) perturbation theory in the interaction strength and (2) numerical evaluations with exact results for small systems and variational results for larger systems. A nonanalytical behavior of β\beta is observed in the limit of infinite impurity mass. For large interaction strength, the exponent depends strongly on the mass of the impurity in contrast to the perturbative result.Comment: 26 pages, RevTeX, 7 figures included, to be published in Phys. Rev.
    corecore