4 research outputs found

    Refined algebraic quantisation with the triangular subgroup of SL(2,R)

    Full text link
    We investigate refined algebraic quantisation with group averaging in a constrained Hamiltonian system whose gauge group is the connected component of the lower triangular subgroup of SL(2,R). The unreduced phase space is T^*R^{p+q} with p>0 and q>0, and the system has a distinguished classical o(p,q) observable algebra. Group averaging with the geometric average of the right and left invariant measures, invariant under the group inverse, yields a Hilbert space that carries a maximally degenerate principal unitary series representation of O(p,q). The representation is nontrivial iff (p,q) is not (1,1), which is also the condition for the classical reduced phase space to be a symplectic manifold up to a singular subset of measure zero. We present a detailed comparison to an algebraic quantisation that imposes the constraints in the sense H_a Psi = 0 and postulates self-adjointness of the o(p,q) observables. Under certain technical assumptions that parallel those of the group averaging theory, this algebraic quantisation gives no quantum theory when (p,q) = (1,2) or (2,1), or when p>1, q>1 and p+q is odd.Comment: 30 pages. LaTeX with amsfonts, amsmath, amssymb. (v4: Typos corrected. Published version.

    Dynamical Vacuum in Quantum Cosmology

    Get PDF
    By regarding the vacuum as a perfect fluid with equation of state p=-rho, de Sitter's cosmological model is quantized. Our treatment differs from previous ones in that it endows the vacuum with dynamical degrees of freedom. Instead of being postulated from the start, the cosmological constant arises from the degrees of freedom of the vacuum regarded as a dynamical entity, and a time variable can be naturally introduced. Taking the scale factor as the sole degree of freedom of the gravitational field, stationary and wave-packet solutions to the Wheeler-DeWitt equation are found. It turns out that states of the Universe with a definite value of the cosmological constant do not exist. For the wave packets investigated, quantum effects are noticeable only for small values of the scale factor, a classical regime being attained at asymptotically large times.Comment: Latex, 19 pages, to appear in Gen. Rel. Gra

    Quantum Black Holes from Quantum Collapse

    Get PDF
    The Schwarzschild black hole can be viewed as the special case of the marginally bound Lema\^\i tre-Tolman-Bondi models of dust collapse which corresponds to a constant mass function. We have presented a midi-superspace quantization of this model for an arbitrary mass-function in a separate publication. In this communication we show that our solution leads both to Bekenstein's area spectrum for black holes as well as to the black hole entropy, which, in this context, is naturally interpreted as the loss of information of the original matter distribution within the collapsing dust cloud.Comment: LaTeX file, 6 pages, 1 figure, Paper re-written into sections, some references added, some elaborations, conclusions unchanged, to appear in Physical Review

    Loop Quantum Gravity: An Inside View

    Get PDF
    This is a (relatively) non -- technical summary of the status of the quantum dynamics in Loop Quantum Gravity (LQG). We explain in detail the historical evolution of the subject and why the results obtained so far are non -- trivial. The present text can be viewed in part as a response to an article by Nicolai, Peeters and Zamaklar [hep-th/0501114]. We also explain why certain no go conclusions drawn from a mathematically correct calculation in a recent paper by Helling et al [hep-th/0409182] are physically incorrect.Comment: 58 pages, no figure
    corecore