335 research outputs found

    Competing phases in the high field phase diagram of (TMTSF)2_2ClO4_4

    Full text link
    A model is presented for the high field phase diagram of (TMTSF)2_2ClO4_4, taking into account the anion ordering, which splits the Fermi surface in two bands. For strong enough field, the largest metal-SDW critical temperature corresponds to the N=0 phase, which originates from two intraband nesting processes. At lower temperature, the competition between these processes puts at disadvantage the N=0 phase vs. the N=1 phase, which is due to interband nesting. A first order transition takes then place from the N=0 to N=1 phase. We ascribe to this effect the experimentally observed phase diagrams.Comment: 5 pages, 3 figures (to appear in Phys. Rev. Lett.

    Quantum Hall effect anomaly and collective modes in the magnetic-field-induced spin-density-wave phases of quasi-one-dimensional conductors

    Full text link
    We study the collective modes in the magnetic-field-induced spin-density-wave (FISDW) phases experimentally observed in organic conductors of the Bechgaard salts family. In phases that exhibit a sign reversal of the quantum Hall effect (Ribault anomaly), the coexistence of two spin-density waves gives rise to additional collective modes besides the Goldstone modes due to spontaneous translation and rotation symmetry breaking. These modes strongly affect the charge and spin response functions. We discuss some experimental consequences for the Bechgaard salts.Comment: Final version (LaTex, 8 pages, no figure), to be published in Europhys. Let

    Ajaccio – La Citadelle

    Get PDF
    Des sondages opérés à l’intérieur de la citadelle ont permis de préciser les éléments de construction du xve s. et les caractéristiques du fort génois. Un abondant mobilier céramique correspondant a été découvert

    Magneto-Roton Modes of the Ultra Quantum Crystal: Numerical Study

    Full text link
    The Field Induced Spin Density Wave phases observed in quasi-one-dimensional conductors of the Bechgaard salts family under magnetic field exhibit both Spin Density Wave order and a Quantized Hall Effect, which may exhibit sign reversals. The original nature of the condensed phases is evidenced by the collective mode spectrum. Besides the Goldstone modes, a quasi periodic structure of Magneto-Roton modes, predicted to exist for a monotonic sequence of Hall Quantum numbers, is confirmed, and a second mode is shown to exist within the single particle gap. We present numerical estimates of the Magneto-Roton mode energies in a generic case of the monotonic sequence. The mass anisotropy of the collective mode is calculated. We show how differently the MR spectrum evolves with magnetic field at low and high fields. The collective mode spectrum should have specific features, in the sign reversed "Ribault Phase", as compared to modes of the majority sign phases. We investigate numerically the collective mode in the Ribault Phase.Comment: this paper incorporates material contained in a previous cond-mat preprint cond-mat/9709210, but cannot be described as a replaced version, because it contains a significant amount of new material dealing with the instability line and with the topic of Ribault Phases. It contains 13 figures (.ps files

    Towards a consistent picture for quasi-1D organic superconductors

    Full text link
    The electrical resistivity of the quasi-1D organic superconductor (TMTSF)2PF6 was recently measured at low temperature from the critical pressure needed to suppress the spin-density-wave state up to a pressure where superconductivity has almost disappeared. This data revealed a direct correlation between the onset of superconductivity at Tc and the strength of a non-Fermi-liquid linear term in the normal-state resistivity, going as r(T) = r0 + AT + BT2 at low temperature, so that A goes to 0 as Tc goes to 0. Here we show that the contribution of low-frequency antiferromagnetic fluctuations to the spin-lattice relaxation rate is also correlated with this non-Fermi-liquid term AT in the resistivity. These correlations suggest that anomalous scattering and pairing have a common origin, both rooted in the low-frequency antiferromagnetic fluctuations measured by NMR. A similar situation may also prevail in the recently-discovered iron-pnictide superconductors.Comment: ISCOM'09 proceedings to be published in Physica

    Field-induced confinement in (TMTSF)2ClO4 under accurately aligned magnetic fields

    Full text link
    We present transport measurements along the least conducting c direction of the organic superconductor (TMTSF)2ClO4, performed under an accurately aligned magnetic field in the low temperature regime. The experimental results reveal a two-dimensional confinement of the carriers in the (a,b) planes which is governed by the magnetic field component along the b' direction. This 2-D confinement is accompanied by a metal-insulator transition for the c axis resistivity. These data are supported by a quantum mechanical calculation of the transverse transport taking into account in self consistent treatment the effect of the field on the interplane Green function and on the intraplane scattering time

    Sign reversals of the Quantum Hall Effect in quasi-1D conductors

    Full text link
    The sign reversals of the Quantum Hall Effect observed in quasi-one-dimensional conductors of the Bechgaard salts family are explained within the framework of the quantized nesting model. The sequence of reversals is driven by slight modifications of the geometry of the Fermi surface. It is explained why only even phases can have signign reversals and why negative phases are less stable than positive ones.Comment: 4 LaTex pages, 3 Postscript figure

    Field-induced spin density wave in (TMTSF)2_2NO3_3

    Full text link
    Interlayer magnetoresistance of the Bechgaard salt (TMTSF)2_2NO3_3 is investigated up to 50 teslas under pressures of a few kilobars. This compound, the Fermi surface of which is quasi two-dimensional at low temperature, is a semi metal under pressure. Nevertheless, a field-induced spin density wave is evidenced at 8.5 kbar above \sim 20 T. This state is characterized by a drastically different spectrum of the quantum oscillations compared to the low pressure spin density wave state.Comment: to be published in Phys. Rev. B 71 (2005

    Sign reversals of the quantum Hall effect and helicoidal magnetic-field-induced spin-density waves in quasi-one-dimensional organic conductors

    Full text link
    We study the effect of umklapp scattering on the magnetic-field-induced spin-density-wave phases, which are experimentally observed in the quasi-one-dimensional organic conductors of the Bechgaard salts family. Within the framework of the quantized nesting model, we show that umklapp processes may naturally explain sign reversals of the quantum Hall effect (QHE) observed in these conductors. Moreover, umklapp scattering can change the polarization of the spin-density wave (SDW) from linear (sinusoidal SDW) to circular (helicoidal SDW). The QHE vanishes in the helicoidal phases, but a magnetoelectric effect appears. These two characteristic properties may be utilized to detect the magnetic-field-induced helicoidal SDW phases experimentally.Comment: 4 pages, latex, 3 figure

    Effect of umklapp scattering on the magnetic-field-induced spin-density waves in quasi-one-dimensional organic conductors

    Full text link
    We study the effect of umklapp scattering on the magnetic-field-induced spin-density-wave (FISDW) phases which are experimentally observed in the quasi-one-dimensional organic conductors of the Bechgaard salts family. Within the framework of the quantized nesting model, we show that the transition temperature is determined by a modified Stoner criterion which includes the effect of umklapp scattering. We determine the SDW polarization (linear or circular) by analyzing the Ginzburg-Landau expansion of the free energy. We also study how umklapp processes modify the quantum Hall effect (QHE) and the spectrum of the FISDW phases. We find that umklapp scattering stabilizes phases which exhibit a sign reversal of the QHE, as experimentally observed in the Bechgaard salts. These ``negative'' phases are characterized by the simultaneous existence of two SDWs with comparable amplitudes. As the umklapp scattering strength increases, they may become helicoidal (circularly polarized SDWs). The QHE vanishes in the helicoidal phases, but a magnetoelectric effect appears. These two characteristic properties may be utilized to detect the magnetic-field-induced helicoidal SDW phases experimentally.Comment: Revtex, 27 pages, 9 figure
    corecore