3 research outputs found

    Quantum Stephani Universe in vicinity of the symmetry center

    Full text link
    We study a class of spherically symmetric Stephani cosmological models in the presence of a self-interacting scalar field in both classical and quantum domains. We discuss the construction of `canonical' wave packets resulting from the solutions of a class of Wheeler-DeWitt equations in the Stephani Universe. We suggest appropriate initial conditions which result in wave packets containing some desirable properties, most importantly good classical and quantum correspondence. We also study the situation from de-Broglie Bohm interpretation of quantum mechanics to recover the notion of time and compare the classical and Bohmian results. We exhibit that the usage of the canonical prescription and appropriate choices of expansion coefficients result in the suppression of the quantum potential and coincidence between classical and Bohmian results. We show that, in some cases, contrary to Friedmann-Robertson-Walker case, the bound state solutions also exist for all positive values of the cosmological constant.Comment: 22 pages, 19 figures, to appear in JCA

    An approach to construct wave packets with complete classical-quantum correspondence in non-relativistic quantum mechanics

    Full text link
    We introduce a method to construct wave packets with complete classical and quantum correspondence in one-dimensional non-relativistic quantum mechanics. First, we consider two similar oscillators with equal total energy. In classical domain, we can easily solve this model and obtain the trajectories in the space of variables. This picture in the quantum level is equivalent with a hyperbolic partial differential equation which gives us a freedom for choosing the initial wave function and its initial slope. By taking advantage of this freedom, we propose a method to choose an appropriate initial condition which is independent from the form of the oscillators. We then construct the wave packets for some cases and show that these wave packets closely follow the whole classical trajectories and peak on them. Moreover, we use de-Broglie Bohm interpretation of quantum mechanics to quantify this correspondence and show that the resulting Bohmian trajectories are also in a complete agreement with their classical counterparts.Comment: 15 pages, 13 figures, to appear in International Journal of Theoretical Physic
    corecore