100 research outputs found

    Pro-inflammatory endothelial cell dysfunction is associated with intersectin-1s down-regulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The response of lung microvascular endothelial cells (ECs) to lipopolysaccharide (LPS) is central to the pathogenesis of lung injury. It is dual in nature, with one facet that is pro-inflammatory and another that is cyto-protective. In previous work, overexpression of the anti-apoptotic Bcl-X<sub>L</sub> rescued ECs from apoptosis triggered by siRNA knockdown of intersectin-1s (ITSN-1s), a pro-survival protein crucial for ECs function. Here we further characterized the cyto-protective EC response to LPS and pro-inflammatory dysfunction.</p> <p>Methods and Results</p> <p>Electron microscopy (EM) analyses of LPS-exposed ECs revealed an activated/dysfunctional phenotype, while a biotin assay for caveolae internalization followed by biochemical quantification indicated that LPS causes a 40% inhibition in biotin uptake compared to controls. Quantitative PCR and Western blotting were used to evaluate the mRNA and protein expression, respectively, for several regulatory proteins of intrinsic apoptosis, including ITSN-1s. The decrease in ITSN-1s mRNA and protein expression were countered by Bcl-X<sub>L</sub> and survivin upregulation, as well as Bim downregulation, events thought to protect ECs from impending apoptosis. Absence of apoptosis was confirmed by TUNEL and lack of cytochrome c (cyt c) efflux from mitochondria. Moreover, LPS exposure caused induction and activation of inducible nitric oxide synthase (iNOS) and a mitochondrial variant (mtNOS), as well as augmented mitochondrial NO production as measured by an oxidation oxyhemoglobin (oxyHb) assay applied on mitochondrial-enriched fractions prepared from LPS-exposed ECs. Interestingly, expression of myc-ITSN-1s rescued caveolae endocytosis and reversed induction of iNOS expression.</p> <p>Conclusion</p> <p>Our results suggest that ITSN-1s deficiency is relevant for the pro-inflammatory ECs dysfunction induced by LPS.</p

    Mitochondrially targeted ceramide LCL-30 inhibits colorectal cancer in mice

    Get PDF
    The sphingolipid ceramide is intimately involved in the growth, differentiation, senescence, and death of normal and cancerous cells. Mitochondria are increasingly appreciated to play a key role in ceramide-induced cell death. Recent work showed the C16-pyridinium ceramide analogue LCL-30 to induce cell death in vitro by mitochondrial targeting. The aim of the current study was to translate these results to an in vivo model. We found that LCL-30 accumulated in mitochondria in the murine colorectal cancer cell line CT-26 and reduced cellular ATP content, leading to dose- and time-dependent cytotoxicity. Although the mitochondrial levels of sphingosine-1-phosphate (S1P) became elevated, transcription levels of ceramide-metabolising enzymes were not affected. In mice, LCL-30 was rapidly absorbed from the peritoneal cavity and cleared from the circulation within 24 h, but local peritoneal toxicity was dose-limiting. In a model of subcutaneous tumour inoculation, LCL-30 significantly reduced the proliferative activity and the growth rate of established tumours. Sphingolipid profiles in tumour tissue also showed increased levels of S1P. In summary, we present the first in vivo application of a long-chain pyridinium ceramide for the treatment of experimental metastatic colorectal cancer, together with its pharmacokinetic parameters. LCL-30 was an efficacious and safe agent. Future studies should identify an improved application route and effective partners for combination treatment

    Acute Inhibition of Selected Membrane-Proximal Mouse T Cell Receptor Signaling by Mitochondrial Antagonists

    Get PDF
    T cells absorb nanometric membrane vesicles, prepared from plasma membrane of antigen presenting cells, via dual receptor/ligand interactions of T cell receptor (TCR) with cognate peptide/major histocompatibility complex (MHC) plus lymphocyte function-associated antigen 1 (LFA-1) with intercellular adhesion molecule 1. TCR-mediated signaling for LFA-1 activation is also required for the vesicle absorption. Exploiting those findings, we had established a high throughput screening (HTS) platform and screened a library for isolation of small molecules inhibiting the vesicle absorption. Follow-up studies confirmed that treatments (1 hour) with various mitochondrial antagonists, including a class of anti-diabetic drugs (i.e., Metformin and Phenformin), resulted in ubiquitous inhibition of the vesicle absorption without compromising viability of T cells. Further studies revealed that the mitochondrial drug treatments caused impairment of specific membrane-proximal TCR signaling event(s). Thus, activation of Akt and PLC-γ1 and entry of extracellular Ca2+ following TCR stimulation were attenuated while polymerization of monomeric actins upon TCR triggering progressed normally after the treatments. Dynamic F-actin rearrangement concurring with the vesicle absorption was also found to be impaired by the drug treatments, implying that the inhibition by the drug treatments of downstream signaling events (and the vesicle absorption) could result from lack of directional relocation of signaling and cell surface molecules. We also assessed the potential application of mitochondrial antagonists as immune modulators by probing effects of the long-term drug treatments (24 hours) on viability of resting primary T cells and cell cycle progression of antigen-stimulated T cells. This study unveils a novel regulatory mechanism for T cell immunity in response to environmental factors having effects on mitochondrial function

    Mitochondria-dependent signalling pathway are involved in the early process of radiation-induced bystander effects

    Get PDF
    Bystander effects induced by cytoplasmic irradiation have been reported recently. However, the mechanism(s) underlying, such as the functional role of mitochondria, is not clear. In the present study, we used either mtDNA-depleted (ρ0) AL or normal (ρ+) AL cells as irradiated donor cells and normal human skin fibroblasts as receptor cells in a series of medium transfer experiments to investigate the mitochondria-related signal process. Our results indicated that mtDNA-depleted cells or normal AL cells treated with mitochondrial respiratory chain function inhibitors had an attenuated γ-H2AX induction, which indicates that mitochondria play a functional role in bystander effects. Moreover, it was found that treatment of normal AL donor cells with specific inhibitors of NOS, or inhibitor of mitochondrial calcium uptake (ruthenium red) significantly decreased γ-H2AX induction and that radiation could stimulate cellular NO and O2•− production in irradiated ρ+ AL cells, but not in ρ0 AL cells. These observations, together with the findings that ruthenium red treatment significantly reduced the NO and O2•− levels in irradiated ρ+ AL cells, suggest that radiation-induced NO derived from mitochondria might be an intracellular bystander factor and calcium-dependent mitochondrial NOS might play an essential role in the process

    Computational Insights on the Competing Effects of Nitric Oxide in Regulating Apoptosis

    Get PDF
    Despite the establishment of the important role of nitric oxide (NO) on apoptosis, a molecular- level understanding of the origin of its dichotomous pro- and anti-apoptotic effects has been elusive. We propose a new mathematical model for simulating the effects of nitric oxide (NO) on apoptosis. The new model integrates mitochondria-dependent apoptotic pathways with NO-related reactions, to gain insights into the regulatory effect of the reactive NO species N2O3, non-heme iron nitrosyl species (FeLnNO), and peroxynitrite (ONOO−). The biochemical pathways of apoptosis coupled with NO-related reactions are described by ordinary differential equations using mass-action kinetics. In the absence of NO, the model predicts either cell survival or apoptosis (a bistable behavior) with shifts in the onset time of apoptotic response depending on the strength of extracellular stimuli. Computations demonstrate that the relative concentrations of anti- and pro-apoptotic reactive NO species, and their interplay with glutathione, determine the net anti- or pro-apoptotic effects at long time points. Interestingly, transient effects on apoptosis are also observed in these simulations, the duration of which may reach up to hours, despite the eventual convergence to an anti-apoptotic state. Our computations point to the importance of precise timing of NO production and external stimulation in determining the eventual pro- or anti-apoptotic role of NO
    corecore