1 research outputs found

    Dynamical Tunneling in Mixed Systems

    Full text link
    We study quantum-mechanical tunneling in mixed dynamical systems between symmetry-related phase space tori separated by a chaotic layer. Considering e.g. the annular billiard we decompose tunneling-related energy splittings and shifts into sums over paths in phase space. We show that tunneling transport is dominated by chaos-assisted paths that tunnel into and out of the chaotic layer via the ``beach'' regions sandwiched between the regular islands and the chaotic sea. Level splittings are shown to fluctuate on two scales as functions of energy or an external parameter: they display a dense sequence of peaks due to resonances with states supported by the chaotic sea, overlaid on top of slow modulations arising from resonances with states supported by the ``beaches''. We obtain analytic expressions which enable us to assess the relative importance of tunneling amplitudes into the chaotic sea vs. its internal transport properties. Finally, we average over the statistics of the chaotic region, and derive the asymptotic tail of the splitting distribution function under rather general assumptions concerning the fluctuation properties of chaotic states.Comment: 28 pages, Latex, 16 EPS figure
    corecore