776 research outputs found

    Blaming the victim, all over again: Waddell and Aylward's biopsychosocial (BPS) model of disability

    Get PDF
    The biopsychosocial (BPS) model of mental distress, originally conceived by the American psychiatrist George Engel in the 1970s and commonly used in psychiatry and psychology, has been adapted by Gordon Waddell and Mansell Aylward to form the theoretical basis for current UK Government thinking on disability. Most importantly, the Waddell and Aylward version of the BPS has played a key role as the Government has sought to reform spending on out-of- work disability benefits. This paper presents a critique of Waddell and Aylward’s model, examining its origins, its claims and the evidence it employs. We will argue that its potential for genuine inter-disciplinary cooperation and the holistic and humanistic benefits for disabled people as envisaged by Engel are not now, if they ever have been, fully realized. Any potential benefit it may have offered has been eclipsed by its role in Coalition/Conservative government social welfare policies that have blamed the victim and justified restriction of entitlements

    Tadpole-improved SU(2) lattice gauge theory

    Get PDF
    A comprehensive analysis of tadpole-improved SU(2) lattice gauge theory is made. Simulations are done on isotropic and anisotropic lattices, with and without improvement. Two tadpole renormalization schemes are employed, one using average plaquettes, the other using mean links in Landau gauge. Simulations are done with spatial lattice spacings asa_s in the range of about 0.1--0.4 fm. Results are presented for the static quark potential, the renormalized lattice anisotropy at/asa_t/a_s (where ata_t is the ``temporal'' lattice spacing), and for the scalar and tensor glueball masses. Tadpole improvement significantly reduces discretization errors in the static quark potential and in the scalar glueball mass, and results in very little renormalization of the bare anisotropy that is input to the action. We also find that tadpole improvement using mean links in Landau gauge results in smaller discretization errors in the scalar glueball mass (as well as in the static quark potential), compared to when average plaquettes are used. The possibility is also raised that further improvement in the scalar glueball mass may result when the coefficients of the operators which correct for discretization errors in the action are computed beyond tree level.Comment: 14 pages, 7 figures (minor changes to overall scales in Fig.1; typos removed from Eqs. (3),(4),(15); some rewording of Introduction

    Unquenched Charmonium with NRQCD - Lattice 2000

    Get PDF
    We present results from a series of NRQCD simulations of the charmonium system, both in the quenched approximation and with n_f = 2 dynamical quarks. The spectra show evidence for quenching effects of ~10% in the S- and P-hyperfine splittings. We compare this with other systematic effects. Improving the NRQCD evolution equation altered the S-hyperfine by as much as 20 MeV, and we estimate radiative corrections may be as large as 40%.Comment: Lattice 2000 (Heavy Quark Physics

    Evaluating Lifeworld as an emancipatory methodology

    Get PDF
    Disability research is conducted within a highly politicised ‘hotbed’ of competing paradigms and principles. New researchers, who want to work within the social model, are soon faced with complex and challenging methodological and philosophical dilemmas. The social model advocates research agendas that are focused on the emancipation and empowerment of disabled people but, in reality, these are rarely achieved. To be successful researchers need to engage with innovative and creative methodologies and to share their experiences of these within environments that welcome challenge and debate. This paper focuses on Lifeworld and assesses its value as a tool for emancipatory research. Using examples from a study with parents, whose children were in the process of being labelled as having autism, the paper illustrates how the principles that ‘underpin’ the methodology offered a supportive framework for a novice researcher

    Perturbative expansions from Monte Carlo simulations at weak coupling: Wilson loops and the static-quark self-energy

    Get PDF
    Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 343^4 to 16416^4) and couplings (from ÎČ≈9\beta \approx 9 to ÎČ≈60\beta \approx 60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.Comment: 36 pages, 15 figures, REVTEX documen

    Mesonic decay constants in lattice NRQCD

    Get PDF
    Lattice NRQCD with leading finite lattice spacing errors removed is used to calculate decay constants of mesons made up of heavy quarks. Quenched simulations are done with a tadpole improved gauge action containing plaquette and six-link rectangular terms. The tadpole factor is estimated using the Landau link. For each of the three values of the coupling constant considered, quarkonia are calculated for five masses spanning the range from charmonium through bottomonium, and one set of quark masses is tuned to the B(c). "Perturbative" and nonperturbative meson masses are compared. One-loop perturbative matching of lattice NRQCD with continuum QCD for the heavy-heavy vector and axial vector currents is performed. The data are consistent with the vector meson decay constants of quarkonia being proportional to the square root of their mass and the B(c) decay constant being equal to 420(13) MeV.Comment: 25 pages in REVTe

    Tadpole renormalization and relativistic corrections in lattice NRQCD

    Get PDF
    We make a comparison of two tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. Improved gauge-field and NRQCD actions are analyzed using the mean-link u0,Lu_{0,L} in Landau gauge, and using the fourth root of the average plaquette u0,Pu_{0,P}. Simulations are done for ccˉc\bar c, bcˉb\bar c, and bbˉb\bar b systems. The hyperfine splittings are computed both at leading and at next-to-leading order in the relativistic expansion. Results are obtained at lattice spacings in the range of about 0.14~fm to 0.38~fm. A number of features emerge, all of which favor tadpole renormalization using u0,Lu_{0,L}. This includes much better scaling behavior of the hyperfine splittings in the three quarkonium systems when u0,Lu_{0,L} is used. We also find that relativistic corrections to the spin splittings are smaller when u0,Lu_{0,L} is used, particularly for the ccˉc\bar c and bcˉb\bar c systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about one in lattice units. Simulations with u0,Lu_{0,L} also appear to be better behaved in this context: the bare quark masses turn out to be larger when u0,Lu_{0,L} is used, compared to when u0,Pu_{0,P} is used on lattices with comparable spacings. These results also demonstrate the need to go beyond tree-level tadpole improvement for precision simulations.Comment: 14 pages, 7 figures (minor changes to some phraseology and references

    Study of Charmonia near the deconfining transition on an anisotropic lattice with O(a) improved quark action

    Get PDF
    We study hadron properties near the deconfining transition in the quenched lattice QCD simulation. This paper focuses on the heavy quarkonium states, such as J/ψJ/\psi meson. In order to treat heavy quarks at T>0T>0, we adopt the O(a)O(a) improved Wilson action on anisotropic lattice. We discuss ccˉc\bar{c} bound state observing the wave function and compare the meson correlators at above and below TcT_c. Although we find a large change of correlator near the TcT_c, the strong spatial correlation which is almost the same as confinement phase survives even T∌1.5TcT\sim 1.5T_c.Comment: 19 pages, 10 figure

    Revisiting glueball wave functions at zero and finite temperature

    Full text link
    We study the sizes and thermal properties of glueballs in a three dimensional compact Abelian gauge model on improved lattice. We predict the radii of ∌0.60\sim 0.60 and ∌1.12\sim 1.12 in the units of string tension, or ∌0.28\sim 0.28 and ∌0.52\sim 0.52 fm, for the scalar and tensor glueballs, respectively. We perform a well controlled extrapolation of the radii to the continuum limit and observe that our results agree with the predicted values. Using Monte Carlo simulations, we extract the pole-mass of the lowest scalar and tensor glueballs from the temporal correlators at finite temperature. We see a clear evidence of the deconfined phase, and the transition appears to be similar to that of the two-dimensional XY model as expected from universality arguments. Our results show no significant changes in the glueball wave functions and masses in the deconfined phase.Comment: 8 pages, 10 figure
    • 

    corecore