567 research outputs found

    Quadrature decomposition of optical fields using two orthogonal phase sensitive amplifiers

    No full text
    We propose a new technique to optically process coherent signals by simultaneously extracting their two (I and Q) quadrature components into two orthogonal polarizations at the same frequency. Two possible implementations are demonstrated

    Efficient binary phase quantizer based on phase sensitive four wave mixing

    No full text
    We experimentally demonstrate an efficient binary phase quantizer operating at low pump powers. Phase-sensitive operation is obtained by polarization mixing the phase-locked signal/idler pair in a degenerate dual-pump vector parametric amplifier

    Novel polarization-assisted phase sensitive optical signal processor requiring low nonlinear phase shifts

    No full text
    We demonstrate a new scheme to achieve binary step-like phase response and high phase-sensitive extinction ratio at low powers. Phase-sensitive operation is achieved by polarization filtering phase-locked signal/idler in a degenerate dual-pump vector parametric amplifier

    Signal regeneration techniques for advanced modulation formats

    No full text
    We review recent results on all-optical regeneration of phase encoded signals based on phase sensitive amplification achieved by avoiding phase-to-amplitude conversion in order to facilitate the regeneration of amplitude/phase encoded (QAM) signals

    Ricci flows and expansion in axion-dilaton cosmology

    Full text link
    We study renormalization-group flows by deforming a class of conformal sigma-models. We consider overall scale factor perturbation of Einstein spaces as well as more general anisotropic deformations of three-spheres. At leading order in alpha, renormalization-group equations turn out to be Ricci flows. In the three-sphere background, the latter is the Halphen system, which is exactly solvable in terms of modular forms. We also analyze time-dependent deformations of these systems supplemented with an extra time coordinate and time-dependent dilaton. In some regimes time evolution is identified with renormalization-group flow and time coordinate can appear as Liouville field. The resulting space-time interpretation is that of a homogeneous isotropic Friedmann-Robertson-Walker universe in axion-dilaton cosmology. We find as general behaviour the superposition of a big-bang (polynomial) expansion with a finite number of oscillations at early times. Any initial anisotropy disappears during the evolution.Comment: 22 page

    Transfer of ultra-low phase noise microwave references over the JANET Aurora fibre network using a femtosecond optical frequency comb

    No full text
    An ultra-low phase noise microwave frequency is transferred over 82 km of installed fibre by propagation of a 30 nm bandwidth optical frequency comb (104 modes). The phase noise induced along the fibre by vibrations and thermal effects is suppressed by implementing a noise cancellation scheme where a portion of the light is sent back to the transmitter through the same fibre. The 6th harmonic of the repetition rate detected before and after the pulse train has travelled a round trip are phase compared and used to generate an error signal that controls a fibre stretcher to compensate for the fibre-induced phase fluctuations. Optical amplifiers are used to compensate for the fibre attenuation and dispersion compensation modules are also employed

    G3-homogeneous gravitational instantons

    Full text link
    We provide an exhaustive classification of self-dual four-dimensional gravitational instantons foliated with three-dimensional homogeneous spaces, i.e. homogeneous self-dual metrics on four-dimensional Euclidean spaces admitting a Bianchi simply transitive isometry group. The classification pattern is based on the algebra homomorphisms relating the Bianchi group and the duality group SO(3). New and general solutions are found for Bianchi III.Comment: 24 pages, few correction

    Investigation into the role of pump to signal power ratio in FWM-based phase preserving amplitude regeneration

    No full text
    We carry out a detailed experimental characterization of a four-wave mixing based amplitude limiter in highly nonlinear fiber based on the Bessel-like power transfer characteristics and highlight trade-offs for phase preserving capabilities

    Quantifying the prediction accuracy of a 1-D SVAT model at a range of ecosystems in the USA and Australia: evidence towards its use as a tool to study Earth's system interactions

    Get PDF
    This paper describes the validation of the SimSphere SVAT (Soil–Vegetation–Atmosphere Transfer) model conducted at a range of US and Australian ecosystem types. Specific focus was given to examining the models' ability in predicting shortwave incoming solar radiation (Rg), net radiation (Rnet), latent heat (LE), sensible heat (H), air temperature at 1.3 m (Tair 1.3 m) and air temperature at 50 m (Tair 50 m). Model predictions were compared against corresponding in situ measurements acquired for a total of 72 selected days of the year 2011 obtained from eight sites belonging to the AmeriFlux (USA) and OzFlux (Australia) monitoring networks. Selected sites were representative of a variety of environmental, biome and climatic conditions, to allow for the inclusion of contrasting conditions in the model evaluation. Overall, results showed a good agreement between the model predictions and the in situ measurements, particularly so for the Rg, Rnet, Tair 1.3 m and Tair 50 m parameters. The simulated Rg parameter exhibited a root mean square deviation (RMSD) within 25 % of the observed fluxes for 58 of the 72 selected days, whereas an RMSD within ~ 24 % of the observed fluxes was reported for the Rnet parameter for all days of study (RMSD = 58.69 W m−2). A systematic underestimation of Rg and Rnet (mean bias error (MBE) = −19.48 and −16.46 W m−2) was also found. Simulations for the Tair 1.3 m and Tair 50 m showed good agreement with the in situ observations, exhibiting RMSDs of 3.23 and 3.77 °C (within ~ 15 and ~ 18 % of the observed) for all days of analysis, respectively. Comparable, yet slightly less satisfactory simulation accuracies were exhibited for the H and LE parameters (RMSDs = 38.47 and 55.06 W m−2, ~ 34 and ~ 28 % of the observed). Highest simulation accuracies were obtained for the open woodland savannah and mulga woodland sites for most of the compared parameters. The Nash–Sutcliffe efficiency index for all parameters ranges from 0.720 to 0.998, suggesting a very good model representation of the observations. To our knowledge, this study presents the most detailed evaluation of SimSphere done so far, and the first validation of it conducted in Australian ecosystem types. Findings are important and timely, given the expanding use of the model both as an educational and research tool today. This includes ongoing research by different space agencies examining its synergistic use with Earth observation data towards the development of global operational products
    • 

    corecore