1,841 research outputs found
Probability Theory Compatible with the New Conception of Modern Thermodynamics. Economics and Crisis of Debts
We show that G\"odel's negative results concerning arithmetic, which date
back to the 1930s, and the ancient "sand pile" paradox (known also as "sorites
paradox") pose the questions of the use of fuzzy sets and of the effect of a
measuring device on the experiment. The consideration of these facts led, in
thermodynamics, to a new one-parameter family of ideal gases. In turn, this
leads to a new approach to probability theory (including the new notion of
independent events). As applied to economics, this gives the correction, based
on Friedman's rule, to Irving Fisher's "Main Law of Economics" and enables us
to consider the theory of debt crisis.Comment: 48p., 14 figs., 82 refs.; more precise mathematical explanations are
added. arXiv admin note: significant text overlap with arXiv:1111.610
q-Legendre Transformation: Partition Functions and Quantization of the Boltzmann Constant
In this paper we construct a q-analogue of the Legendre transformation, where
q is a matrix of formal variables defining the phase space braidings between
the coordinates and momenta (the extensive and intensive thermodynamic
observables). Our approach is based on an analogy between the semiclassical
wave functions in quantum mechanics and the quasithermodynamic partition
functions in statistical physics. The basic idea is to go from the
q-Hamilton-Jacobi equation in mechanics to the q-Legendre transformation in
thermodynamics. It is shown, that this requires a non-commutative analogue of
the Planck-Boltzmann constants (hbar and k_B) to be introduced back into the
classical formulae. Being applied to statistical physics, this naturally leads
to an idea to go further and to replace the Boltzmann constant with an infinite
collection of generators of the so-called epoch\'e (bracketing) algebra. The
latter is an infinite dimensional noncommutative algebra recently introduced in
our previous work, which can be perceived as an infinite sequence of
"deformations of deformations" of the Weyl algebra. The generators mentioned
are naturally indexed by planar binary leaf-labelled trees in such a way, that
the trees with a single leaf correspond to the observables of the limiting
thermodynamic system
Mathematical Conception of "Phenomenological" Equilibrium Thermodynamics
In the paper, the principal aspects of the mathematical theory of equilibrium
thermodynamics are distinguished. It is proved that the points of degeneration
of a Bose gas of fractal dimension in the momentum space coincide with critical
points or real gases, whereas the jumps of critical indices and the Maxwell
rule are related to the tunnel generalization of thermodynamics. Semiclassical
methods are considered for the tunnel generalization of thermodynamics and also
for the second and ultrasecond quantization (operators of creation and
annihilation of pairs). To every pure gas there corresponds a new critical
point of the limit negative pressure below which the liquid passes to a
dispersed state (a foam). Relations for critical points of a homogeneous
mixture of pure gases are given in dependence on the concentration of gases.Comment: 37 pages, 9 figure, more precise explanations, more references. arXiv
admin note: substantial text overlap with arXiv:1202.525
Nonlinear dynamics of soft fermion excitations in hot QCD plasma III: Soft-quark bremsstrahlung and energy losses
In general line with our early works [Yu.A. Markov, M.A. Markova, Nucl. Phys.
A770 (2006) 162; 784 (2007) 443] within the framework of a semiclassical
approximation the general theory of calculation of effective currents and
sources generating bremsstrahlung of an arbitrary number of soft quarks and
soft gluons at collision of a high-energy color-charged particle with thermal
partons in a hot quark-gluon plasma, is developed. For the case of one- and
two-scattering thermal partons with radiation of one or two soft excitations,
the effective currents and sources are calculated in an explicit form. In the
model case of `frozen' medium, approximate expressions for energy losses
induced by the most simple processes of bremsstrahlung of soft quark and soft
gluon, are derived. On the basis of a conception of the mutual cancellation of
singularities in the sum of so-called `diagonal' and `off-diagonal'
contributions to the energy losses, an effective method of determining color
factors in scattering probabilities, containing the initial values of Grassmann
color charges, is suggested. The dynamical equations for Grassmann color
charges of hard particle used by us early are proved to be insufficient for
investigation of the higher radiative processes. It is shown that for correct
description of these processes the given equations should be supplemented
successively with the higher-order terms in powers of the soft fermionic field.Comment: 93 pages, 20 figure
Semiclassical Estimates of Electromagnetic Casimir Self-Energies of Spherical and Cylindrical Metallic Shells
The leading semiclassical estimates of the electromagnetic Casimir stresses
on a spherical and a cylindrical metallic shell are within 1% of the field
theoretical values. The electromagnetic Casimir energy for both geometries is
given by two decoupled massless scalars that satisfy conformally covariant
boundary conditions. Surface contributions vanish for smooth metallic
boundaries and the finite electromagnetic Casimir energy in leading
semiclassical approximation is due to quadratic fluctuations about periodic
rays in the interior of the cavity only. Semiclassically the non-vanishing
Casimir energy of a metallic cylindrical shell is almost entirely due to
Fresnel diffraction.Comment: 12 pages, 2 figure
Initial Conditions for Semiclassical Field Theory
Semiclassical approximation based on extracting a c-number classical
component from quantum field is widely used in the quantum field theory.
Semiclassical states are considered then as Gaussian wave packets in the
functional Schrodinger representation and as Gaussian vectors in the Fock
representation. We consider the problem of divergences and renormalization in
the semiclassical field theory in the Hamiltonian formulation. Although
divergences in quantum field theory are usually associated with loop Feynman
graphs, divergences in the Hamiltonian approach may arise even at the tree
level. For example, formally calculated probability of pair creation in the
leading order of the semiclassical expansion may be divergent. This observation
was interpretted as an argumentation for considering non-unitary evolution
transformations, as well as non-equivalent representations of canonical
commutation relations at different time moments. However, we show that this
difficulty can be overcomed without the assumption about non-unitary evolution.
We consider first the Schrodinger equation for the regularized field theory
with ultraviolet and infrared cutoffs. We study the problem of making a limit
to the local theory. To consider such a limit, one should impose not only the
requirement on the counterterms entering to the quantum Hamiltonian but also
the requirement on the initial state in the theory with cutoffs. We find such a
requirement in the leading order of the semiclassical expansion and show that
it is invariant under time evolution. This requirement is also presented as a
condition on the quadratic form entering to the Gaussian state.Comment: 20 pages, Plain TeX, one postscript figur
Comments on the Sign and Other Aspects of Semiclassical Casimir Energies
The Casimir energy of a massless scalar field is semiclassically given by
contributions due to classical periodic rays. The required subtractions in the
spectral density are determined explicitly. The so defined semiclassical
Casimir energy coincides with that obtained using zeta function regularization
in the cases studied. Poles in the analytic continuation of zeta function
regularization are related to non-universal subtractions in the spectral
density. The sign of the Casimir energy of a scalar field on a smooth manifold
is estimated by the sign of the contribution due to the shortest periodic rays
only. Demanding continuity of the Casimir energy under small deformations of
the manifold, the method is extended to integrable systems. The Casimir energy
of a massless scalar field on a manifold with boundaries includes contributions
due to periodic rays that lie entirely within the boundaries. These
contributions in general depend on the boundary conditions. Although the
Casimir energy due to a massless scalar field may be sensitive to the physical
dimensions of manifolds with boundary, its sign can in favorable cases be
inferred without explicit calculation of the Casimir energy.Comment: 39 pages, no figures, references added, some correction
Exponentially Large Probabilities in Quantum Gravity
The problem of topology change transitions in quantum gravity is investigated
from the Wheeler-de Witt wave function point of view. It is argued that for all
theories allowing wormhole effects the wave function of the universe is
exponentially large. If the wormhole action is positive, one can try to
overcome this difficulty by redefinition of the inner product, while for the
case of negative wormhole action the more serious problems arise.Comment: 9 pages in LaTeX, 4 figures in PostScript, the brief version of this
paper is to appear in Proceedings of the XXIV ITEP Winter School of Physic
Global in Time Solutions to Kolmogorov-Feller Pseudodifferential Equations with Small Parameter
The goal in this paper is to demonstrate a new method for constructing
global-in-time approximate (asymptotic) solutions of (pseudodifferential)
parabolic equations with a small parameter. We show that, in the leading term,
such a solution can be constructed by using characteristics, more precisely, by
using solutions of the corresponding Hamiltonian system and without using any
integral representation. For completeness, we also briefly describe the
well-known scheme developed by V.P.Maslov for constructing global-in-time
solutions.Comment: 27 page
- …