128 research outputs found
âEco-tool-seekerâ: A new and unique business guide for choosing ecodesign tools
Environmental sustainability has emerged as a key issue amongst governments, policymakers, researchers, companies and the general public. In Europe, governments are trying to encourage companies to integrate ecodesign into their processes. A great variety of ecodesign tools exists but the actual implementation level of such tools remains limited or not successfully integrated throughout the different company processes. Having identified the main barriers to ecodesign implementation, this article provides a literature review of the existing tools that can be used in various company departments. From this review, 629 tools were found and characterized. Taxonomy was established to classify these tools into 22 categories of ecodesign tools and 5 departments in companies. These tools are classified as normative or non-normative which can be generic or sectorial as well as âenvironmentalâ or âimprovementâ. A guide (or information system) has been then developed to help companies to choose ecodesign tools for three targets: production, management or communication. The proposed guide can also be useful for researchers, teachers, and trainers. In order to facilitate these choices, a free computerized version of this guide, called âEco-tool-seekerâ, has been developed
Formation of ionospheric irregularities over Southeast Asia during the 2015 St. PatrickËs Day storm
We investigate the geospace response to the 2015 St. PatrickËs Day storm leveraging on instruments spread over Southeast Asia (SEA), covering a wide longitudinal sector of the low-latitude
ionosphere. A regional characterization of the storm is provided, identifying the peculiarities of ionospheric irregularity formation. The novelties of this work are the characterization in a broad longitudinal range and the methodology relying on the integration of data acquired by Global Navigation Satellite System (GNSS) receivers, magnetometers, ionosondes, and Swarm satellites. This work is a legacy of the project EquatoRial
Ionosphere Characterization in Asia (ERICA). ERICA aimed to capture the features of both crests of the equatorial ionospheric anomaly (EIA) and trough (EIT) by means of a dedicated measurement campaign. The campaign lasted from March to October 2015 and was able to observe the ionospheric variability causing
effects on radio systems, GNSS in particular. The multiinstrumental and multiparametric observations of the
region enabled an in-depth investigation of the response to the largest geomagnetic storm of the current solar cycle in a region scarcely reported in literature. Our work discusses the comparison between northern and southern crests of the EIA in the SEA region. The observations recorded positive and negative ionospheric storms, spread F conditions, scintillation enhancement and inhibition, and total electron content variability. The ancillary information on the local magnetic field highlights the variety of ionospheric perturbations during the different storm phases. The combined use of ionospheric bottomside, topside,
and integrated information points out how the storm affects the F layer altitude and the consequent enhancement/suppression of scintillations.Published12211â122331A. Geomagnetismo e Paleomagnetismo2A. Fisica dell'alta atmosfera1IT. Reti di monitoraggio e Osservazioni5IT. Osservazioni satellitariJCR Journalope
The concentration-discharge slope as a tool for water quality management
Recent technological breakthroughs of optical sensors and analysers have enabled matching the water quality measurement interval to the time scales of stream flow changes and led to an improved understanding of spatially and temporally heterogeneous sources and delivery pathways for many solutes and particulates. This new ability to match the chemograph with the hydrograph has promoted renewed interest in the concentration-discharge (c-q) relationship and its value in characterizing catchment storage, time lags and legacy effects for both weathering products and anthropogenic pollutants. In this paper we evaluated the stream c-q relationships for a number of water quality determinands (phosphorus, suspended sediments, nitrogen) in intensively managed agricultural catchments based on both high-frequency (sub-hourly) and long-term low-frequency (fortnightly-monthly) routine monitoring data. We used resampled high-frequency data to test the uncertainty in water quality parameters (e.g. mean, 95th percentile and load) derived from low-frequency sub-datasets. We showed that the uncertainty in water quality parameters increases with reduced sampling frequency as a function of the c-q slope. We also showed that different sources and delivery pathways control c-q relationship for different solutes and particulates. Secondly, we evaluated the variation in c-q slopes derived from the long-term low-frequency data for different determinands and catchments and showed strong chemostatic behaviour for phosphorus and nitrogen due to saturation and agricultural legacy effects. The c-q slope analysis can provide an effective tool to evaluate the current monitoring networks and the effectiveness of water management interventions. This research highlights how improved understanding of solute and particulate dynamics obtained with optical sensors and analysers can be used to understand patterns in long-term water quality time series, reduce the uncertainty in the monitoring data and to manage eutrophication in agricultural catchments
Predicting River Macroinvertebrate Communities Distributional Shifts under Future Global Change Scenarios in the Spanish Mediterranean Area
Several studies on global change over the next century predict increases in mean air temperatures of between 1°C to 5°C that would affect not only water temperature but also river flow. Climate is the predominant environmental driver of thermal and flow regimes of freshwater ecosystems, determining survival, growth, metabolism, phenology and behaviour as well as biotic interactions of aquatic fauna. Thus, these changes would also have consequences for species phenology, their distribution range, and the composition and dynamics of communities. These effects are expected to be especially severe in the Mediterranean basin due its particular climate conditions, seriously threatening Southern European ecosystems. In addition, species with restricted distributions and narrow ecological requirements, such as those living in the headwaters of rivers, will be severely affected. The study area corresponds to the Spanish Mediterranean and Balearic Islands, delimited by the Köppen climate boundary. With the application of the MEDPACS (MEDiterranean Prediction And Classification System) predictive approach, the macroinvertebrate community was predicted for current conditions and compared with three posible scenarios of watertemperature increase and its associated water flow reductions. The results indicate that the aquatic macroinvertebrate communities will undergo a drastic impact, with reductions in taxa richness for each scenario in relation to simulated current conditions, accompanied by changes in the taxa distribution pattern. Accordingly, the distribution area of most of the taxa (65.96%) inhabiting the mid-high elevations would contract and rise in altitude. Thus, families containing a great number of generalist species will move upstream to colonize new zones with lower water temperatures. By contrast, more vulnerable taxa will undergo reductions in their distribution area.This work was funded by GUADALMED-II (REN2001-3438-C07-06/HID), a project of excellence from âJunta de AndalucĂaâ (RNM-02654/FEDER), the Spanish âMinisterio de Ciencia e InnovaciĂłnâ (CGL2007-61856/BOS), projects and a collaboration agreement between the âSpanish Ministerio de Medio Ambiente, Medio Rural y Marinoâ and the University of Granada (21.812-0062/8511)
Effective but Costly, Evolved Mechanisms of Defense against a Virulent Opportunistic Pathogen in Drosophila melanogaster
Drosophila harbor substantial genetic variation for antibacterial defense, and investment in immunity is thought to involve a costly trade-off with life history traits, including development, life span, and reproduction. To understand the way in which insects invest in fighting bacterial infection, we selected for survival following systemic infection with the opportunistic pathogen Pseudomonas aeruginosa in wild-caught Drosophila melanogaster over 10 generations. We then examined genome-wide changes in expression in the selected flies relative to unselected controls, both of which had been infected with the pathogen. This powerful combination of techniques allowed us to specifically identify the genetic basis of the evolved immune response. In response to selection, population-level survivorship to infection increased from 15% to 70%. The evolved capacity for defense was costly, however, as evidenced by reduced longevity and larval viability and a rapid loss of the trait once selection pressure was removed. Counter to expectation, we observed more rapid developmental rates in the selected flies. Selection-associated changes in expression of genes with dual involvement in developmental and immune pathways suggest pleiotropy as a possible mechanism for the positive correlation. We also found that both the Toll and the Imd pathways work synergistically to limit infectivity and that cellular immunity plays a more critical role in overcoming P. aeruginosa infection than previously reported. This work reveals novel pathways by which Drosophila can survive infection with a virulent pathogen that may be rare in wild populations, however, due to their cost
Genotype and Gene Expression Associations with Immune Function in Drosophila
It is now well established that natural populations of Drosophila melanogaster harbor substantial genetic variation associated with physiological measures of immune function. In no case, however, have intermediate measures of immune function, such as transcriptional activity of immune-related genes, been tested as mediators of phenotypic variation in immunity. In this study, we measured bacterial load sustained after infection of D. melanogaster with Serratia marcescens, Providencia rettgeri, Enterococcus faecalis, and Lactococcus lactis in a panel of 94 third-chromosome substitution lines. We also measured transcriptional levels of 329 immune-related genes eight hours after infection with E. faecalis and S. marcescens in lines from the phenotypic tails of the test panel. We genotyped the substitution lines at 137 polymorphic markers distributed across 25 genes in order to test for statistical associations among genotype, bacterial load, and transcriptional dynamics. We find that genetic polymorphisms in the pathogen recognition genes (and particularly in PGRP-LC, GNBP1, and GNBP2) are most significantly associated with variation in bacterial load. We also find that overall transcriptional induction of effector proteins is a significant predictor of bacterial load after infection with E. faecalis, and that a marker upstream of the recognition gene PGRP-SD is statistically associated with variation in both bacterial load and transcriptional induction of effector proteins. These results show that polymorphism in genes near the top of the immune system signaling cascade can have a disproportionate effect on organismal phenotype due to the amplification of minor effects through the cascade
Characterisation and Skin Distribution of Lecithin-Based Coenzyme Q10-Loaded Lipid Nanocapsules
The purpose of this study was to investigate the influence of the inner lipid ratio on the physicochemical properties and skin targeting of surfactant-free lecithin-based coenzyme Q10-loaded lipid nanocapsules (CoQ10-LNCs). The smaller particle size of CoQ10-LNCs was achieved by high pressure and a lower ratio of CoQ10/GTCC (Caprylic/capric triglyceride); however, the zeta potential of CoQ10-LNCs was above /â 60 mV/ with no distinct difference among them at different ratios of CoQ10/GTCC. Both the crystallisation point and the index decreased with the decreasing ratio of CoQ10/GTCC and smaller particle size; interestingly, the supercooled state of CoQ10-LNCs was observed at particle size below about 200 nm, as verified by differential scanning calorimetry (DSC) in one heatingâcooling cycle. The lecithin monolayer sphere structure of CoQ10-LNCs was investigated by cryogenic transmission electron microscopy (Cryo-TEM). The skin penetration results revealed that the distribution of Nile red-loaded CoQ10-LNCs depended on the ratio of inner CoQ10/GTCC; moreover, epidermal targeting and superficial dermal targeting were achieved by the CoQ10-LNCs application. The highest fluorescence response was observed at a ratio of inner CoQ10/GTCC of 1:1. These observations suggest that lecithin-based LNCs could be used as a promising topical delivery vehicle for lipophilic compounds
A shared role for RBF1 and dCAP-D3 in the regulation of transcription with consequences for innate immunity
Previously, we discovered a conserved interaction between RB proteins and the Condensin II protein CAP-D3 that is important for ensuring uniform chromatin condensation during mitotic prophase. The Drosophila melanogaster homologs RBF1 and dCAP-D3 co-localize on non-dividing polytene chromatin, suggesting the existence of a shared, non-mitotic role for these two proteins. Here, we show that the absence of RBF1 and dCAP-D3 alters the expression of many of the same genes in larvae and adult flies. Strikingly, most of the genes affected by the loss of RBF1 and dCAP-D3 are not classic cell cycle genes but are developmentally regulated genes with tissue-specific functions and these genes tend to be located in gene clusters. Our data reveal that RBF1 and dCAP-D3 are needed in fat body cells to activate transcription of clusters of antimicrobial peptide (AMP) genes. AMPs are important for innate immunity, and loss of either dCAP-D3 or RBF1 regulation results in a decrease in the ability to clear bacteria. Interestingly, in the adult fat body, RBF1 and dCAP-D3 bind to regions flanking an AMP gene cluster both prior to and following bacterial infection. These results describe a novel, non-mitotic role for the RBF1 and dCAP-D3 proteins in activation of the Drosophila immune system and suggest dCAP-D3 has an important role at specific subsets of RBF1-dependent genes
The relationships between biotic uniqueness and abiotic uniqueness are context dependent across drainage basins worldwide
[EN] Context: Global change, including land-use change and habitat degradation, has led to a decline in biodiversity, more so in freshwater than in terrestrial ecosystems. However, the research on freshwaters lags behind terrestrial and marine studies, highlighting the need for innovative approaches to comprehend freshwater biodiversity. Objectives: We investigated patterns in the relationships between biotic uniqueness and abiotic environmental uniqueness in drainage basins worldwide. Methods: We compiled high-quality data on aquatic insects (mayflies, stoneflies, and caddisflies at genus-level) from 42 drainage basins spanning four continents. Within each basin we calculated biotic uniqueness (local contribution to beta diversity, LCBD) of aquatic insect assemblages, and four types of abiotic uniqueness (local contribution to environmental heterogeneity, LCEH), categorized into upstream land cover, chemical soil properties, stream site landscape position, and climate. A mixed-effects meta-regression was performed across basins to examine variations in the strength of the LCBD-LCEH relationship in terms of latitude, human footprint, and major continental regions (the Americas versus Eurasia). Results: On average, relationships between LCBD and LCEH were weak. However, the strength and direction of the relationship varied among the drainage basins. Latitude, human footprint index, or continental location did not explain significant variation in the strength of the LCBD-LCEH relationship. Conclusions: We detected strong context dependence in the LCBD-LCEH relationship across the drainage basins. Varying environmental conditions and gradient lengths across drainage basins, land-use change, historical contingencies, and stochastic factors may explain these findings. This context dependence underscores the need for basin-specific management practices to protect the biodiversity of riverine systemsSIOpen Access funding provided by University of Oulu (including Oulu University Hospital). The work for this article was supported by the Academy of Finlandâs grant to JHeino for the project GloBioTrends (Grant No. 331957). JGG was funded by the European Union Next Generation EU/PRTR (Grant No. AG325). Work by LMB has been continuously supported by the National Council for Scientifc & Technological Development (CNPq) and Fundação de Amparo Ă Pesquisa do Estado de GoiĂĄs (FAPEG) (grants 308974/2020â4 and 465610/2014â5). PB and ZC were fnancially supported by the National Research Development and Innovation Ofce (NKFIH FK 135 136), and PB was supported by the JĂĄnos Bolyai Research Scholarship of the Hungarian Academy of Sciences BO-00106â21. LB thanks the National Council for Scientifc and Technological Development (CNPq) for the Scientifc Initiation Fellowship for JVASS and the productivity fellowship in research to LSB (process nÂș. 305929/2022â4). MC was awarded National Council for Scientifc & Technological Development (CNPq) research productivity grant 304060/2020â8 and received grants (PPM 00104â18, APQ-00261â22) from the Fundação de Amparo Ă Pesquisa do Estado de Minas Gerais. SD and JRGM acknowledge funding by the Leibniz Competition (Grant No. J45/2018) and the German Federal Ministry of Education and Research (BMBF grant agreement number no. 033W034A). DRM was supported by National Council for Scientifc & Technological Development (CNPq) (Grant No. PQ-309763â2020-7). DMPC received a postdoctoral scholarship from P&D Aneel- Cemig GT-611. PH was partially funded by the eLTER PLUS project (Grant Agreement No. 871128). LJ is grateful to 33 Forest, CIKEL Ltd. and Instituto de Floresta Tropical (IFT), Biodiversity Research Consortium Brazil-Norway (BRC), and Norsk Hydro for the fnancial and logistical support for sampling. Brazilian National Council for Scientifc and Technological Development (CNPq) is acknowledged for fnancing the projects and for granting a research productivity fellowship to LJ (304710/2019â9). APJF was supported by Conselho Nacional de Desenvolvimento CientĂfco e TecnolĂłgico (CNPq, Brazil, process no. 449315/2014â2 and 481015/2011â6). RL also received a research productivity fellowship from CNPq (grant # 312531/2021â4). MSL received a postdoctoral scholarship from ANEEL/CEMIG (Project GT-599). Part of feld sampling and aquatic insects processing were funded by Conselho Nacional de Desenvolvimento CientĂfco e TecnolĂłgico (CNPq; 403758/2021â1); Fundação de Amparo Ă Pesquisa do Estado do Amazonas (FAPEAM; Programa Biodiversa) and INCT ADAPTA II â (CNPq: 465540/2014â7; FAPEAM: 062.1187/2017). NH (308970/2019â5) received productivity fellowships from CNPq. RTM received a fellowship from Biodiversa/FAPEAM (01.02.016301.03271/2021â93). KLM acknowledges fnancial support from the Swiss Federal Ofce for the Environment to undertake data collection. Funding for the Segura River basin project was provided by the Seneca Foundation and the European Fund of Regional Development (PLP10/FS/97). FOR was supported by CNPq research grant. TS was partially funded by grant 13/50424â1 and 21/00619â7 from the SĂŁo Paulo Research Foundation (FAPESP), and by grant 309496/2021â7 from the Conselho Nacional de Desenvolvimento CientĂfco e TecnolĂłgico (CNPq). FVN was supported by grant #2021/13299â0, SĂŁo Paulo Research Foundation (FAPESP). ALA acknowledges Brazilian National Council for Scientifc and Technological Development (CNPq, Brazil) for granting a postdoctoral scholarship to her (process number: 167873/2022â9
- âŠ